Retinal Cell Identification from Compressed Signals

Maxwell Strange, Pumiao Yan, Andrew Wang
Department of Electrical Engineering
Stanford University
{mstrange, pumiaoy, zwang267}@stanford.edu

Abstract

The creation of brain-machine interfaces opens a gateway to a range of extraordinary applications, from
treating crippling neurological diseases to expanding humankind’s sensory perception. Traditional interfaces
had limited electrodes of < 100, and present systems target significantly larger and denser arrays for single-cell
specificity such as Neuralink. This trend is currently bottlenecked by the power budget and supportable data
rate of a fully implanted device. Some proposed solutions use specialized circuitry to perform compression on
signals from excited retinal neurons, but certain configurations of this compression, albeit power-efficient, are
lossy. To that end, this work implements a 1-dimensional convolutional neural network to reconstruct raw
neuronal spikes from their compressed counterparts. By offloading this reconstruction to simple inference on a
device separate from the retinal implant, we can reduce the power needs of an implantable device. Compared to
a baseline reconstruction model on 8-bit compressed waves (linear-interpolation), which only achieves a MSE
of 42.1 and 81% cell identification accuracy on an array of 512 electrodes recording macaque monkey’s retina,
our network leads to reconstruction results that achieve a MSE of 24.0 that allows a cell mosaic recovery of
over 98% accuracy for on and off parasol cells. This reconstruction network makes an extra 16x compression
possible at the same level of recording performance.

1 Introduction

Multi-channel action potential recording systems are widely used in neuroscientific
studies and emerging clinical applications collectively known as brain-machine inter- No collision Small collision
faces. While first-generation interfaces had limited electrode counts of <100, present
research systems target significantly larger and denser arrays for single-cell specificity.
This trend is currently bottlenecked by the power budget and supportable data rate
of a fully implanted device. We turned to focus on neural signal compression and
reconstruction to break the power-data rate bottleneck. An on-going research of the
Murmann Group works on novel architectures for the massively parallel digitization Y

of neural action potentials to break this bottleneck. The scheme achieves simultaneous _(a) - ®)

signal compression and channel multiplexing through wired-OR interactions within Méssw? éoms(m o

an array of single-slope A/D converters[1], shown as Fig. [T} While the xy-projection o sparse info ——’/
compressor architecture effectively retains critical samples belonging to spikes, under - P od
certain configurations the compression is lossy. To achieve good compression perfor- :) / _
mance, reconstruction is crucial to recover cell information. In this project shown as ™ T ot muen m:fne
Fig. [2| we apply deep learning algorithms to find a suitable approach to reconstruct -] Global ramp signal
neural spikes from the compressed outputs of the Wired-OR architecture to improve © (@

the compression rate under the same performance level. The input to our main network i)

is a 71-sample time-series of a compressed neuronal spike. The range of this data is Figure 1: Compression Scheme [1]

that of an 8b ADC — [-128 to 128]. We then use a 1-dimensional convolutional neural
network to reconstruct the 71-sample raw waveform. The ultimate goal is to reconstruct a large set of raw spikes over a few
minutes of a dataset and pass those through state-of-the-art neurology processing software Vision to identify the retinal cells

CS230: Deep Learning, Autumn 2019, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

Computer

Display all {\

Voltage [uV]
<

| !
1
Lens l l l |'> ‘+ ‘Original Signal ’
C -100 + Reconstructed Data | |
Retina & *_Collision-Free Samples|
150 ——+ e == = e —
MEA ’ : 3T|me|:“s] ¢
; Compression and Spike i i i i
Raw Recording p é p Deep Learning _Splke Neural S_lgnal Analysis
Extraction Reconstruction Mosaic Recovery

Figure 2: Project Structure

lying under the implanted electrode array. Doing this allows for lower required power and supported data rate for implantable
devices, since the raw waveforms can simply be produced through inference on a device external to the implant.

2 Related work

Speech Waveform Reconstruction: Waveform reconstruction itself is not a novel idea, and has been explored in the audio
domain. Some combination of residual and convolutional blocks are typically used to construct a 1D time-domain (TD) audio
waveforms at the output. [6] shows that a high quality audio signal from a low-resolution, downsampled input signal. However,
the dataset we are using is compressed in amplitutude, rather than compressed in time, which makes our reconstruction problem
different. Convolutional neural networks have also been shown to be efficient at constructing audio, given mel-spectral features.
[3] and [4] propose an interesting network for this problem using mean squared error as the loss, and will be explored more in
section 4.

Bandwidth Expansion Bandwidth expansion (BWE) is the process of constructing a wideband signal, given a narrowband input
signal. While BWE has been performed using both algorithmic [7] and deep neural network approaches [8], experiments have
found that DNN-based bandwidth expansion can produce less distortion and a smoother frequency spectrum [8][9].

One shared characteristic among all these waveform reconstruction tasks is the use of a spectrogram. Spectrograms rely on
the short-time Fourier transform (STFT), which takes a window of n time samples and produces % + 1 frequency bands for
that window. Windows with 25ms length with a 10ms stride are often used to produce tens of frequency bands and give good
resolution in the frequency domain. On the other hand, each of our neural signals are only 3.5ms in length, which significantly
limits our spectrogram resolution and makes processing in the frequency domain less effective. As such, we take some basic
network ideas from these projects in the audio domain as a starting point, but cannot directly copy existing approaches.

3 Dataset and Features

The dataset consists of about 60 million examples in total. We use around 38 million examples for training and use 468k
examples for our dev set. Our test set consists of the remaining 20 million samples. The reasons for this unusual dataset split
across training/validation/testing will become apparent in Section[5.2] These 60 million examples come from retinal response
waveforms from a macaque monkey provided by Professor E.J. Chichilnisky at Stanford. A raw recording of 30 minutes from a
512-electrode array sampled at 20kHz is processed by a state-of-the-art neurology data processing tool called Vision to provide
the timestamps for each spike in the recording.

The data are first converted from their native bin file format to a mat file for consumption in matlab. In their raw format, these
waveforms have millivolt resolution, and in their compressed form, the waveforms have values from -128 to 128, based on an
8-bit compression scheme. Then, the waveforms are chopped into 71-sample pieces at the times corresponding to the spikes.
We take these 71-sample spikes and pass them through a model of the compression inherent in the circuit configuration. After
compression, we filter out those compressed results that become entirely 0. This is reasonable because there are long stretches of
0 in the other examples that can be used to learn a model on 0-valued data. Figure [3]below shows some examples of raw spikes
and their compressed versions.

The last step in our data processing pipeline was to convert these (compressed, raw) spike pairs into TFRecord files. Since our
dataset was too large to fit in the memory of any machines available to us, we needed to leverage the dynamic input pipelines
offered by tensorflow, which unfortunately only accept these file types and not numpy arrays.

Compressed... Raw.
1o

20
as

10
0.0 4

1.0 4 —z0 4

—1.5 20

a0

° To) 30 10 50 6o 70 ° 1o) 30 10 50 6o 70

Compressed... Raw...

0.00

—o.25

—0.50

—0.75

—1.00

—1.25

—1.50

—1.75

—2.00
& 1o Zo =0 a0 so o 70 & 1o Zo =0 a0 so o 70

(a) Compressed spike examples (b) Raw spike examples

Figure 3: Dataset preview

4 Methods

input:

in: nputT ayer
output:

[(> 1. 71)]

We approached the problem of reconstructing raw spike waveforms with a few different wpat | 017D
methods, each of which attempts to exploit different features of a time series signal. We looked
at implementing networks that leveraged one-dimensional convolution, the spectrogram of the
time series, and 2D convolution on the spectrogram. With that being said, we found that the
latter two methodologies had strange behavior when we implemented them, and we actually

saw cost increase on these during training.

convld: ConviD

output:

input: | (2,32, 67)
output: | (2, 16, 67)

max_poolingl d: MaxPoolingl D

input:
convid_1: ConviD

output:

I

ax_poolingl d_1: MaxPoolingl D

I

(2,64, 63)

Our one-dimensional CNN has a structure that uses 3 main conv and max pooling layers to
extract features in a set of channels, and then we push them through two large dense layers
before using a 1D conv layer to collapse the channels and create the output layer. Figure [4]
explicitly shows the final architecture of the 1D CNN. To train this network, we used Mini-batch
gradient descent with an Adam Optimizer. The Adam optimizer leverages both momentum and
RMS prop to prevent the loss from oscillating too much.

input: | (2, 61,63)

(2. 32,63)

output:

nput: | (2,32, 63)

couvld_2: CouvlD .
output: | (2,96, 61)

input: | (2,96, 61)

max_poolingld_2: MaxPoolingl D

We chose mean squared error (MSE) for our loss function as we are looking for the reconstructed
waveform to be similar to the raw waveform on a sample-by-sample basis. MSE is defined on
a training example as:

input:
dense_4: Dense

output:

l

input: | (2, 18, 2000)

(2, 18, 2000)

dense_5: Dense
output: | (2, 18, 1500)

1 . . 1
MSE(5,9) = =2 Y (u(0) = ()

=1

(2, 48, 1500)

convld_3: ComviD
output:

mput: | (2,1, 1500)

out: Dense
output:

where y is the raw signal and g is the reconstructed signal. By minimizing this, we hope to
very closely reconstruct the noteworthy parts of the signal (where it is nonzero). Because MSE Figure 4: 1D CNN

loss on a time signal tends to predict the average of the signal for stochastic portions of the

waveform, we also attempted to use a combination of MSE loss in the time and frequency domains to better predict the stochastic
effects [3].

Two main network architectures were tested using the combined loss. The first network uses a 1D CNN as previously described
to output a 1D TD signal, but also adds some layers in series at the output to compute the spectrogram of the predicted
TD signal. The second network computes the spectrogram of the input signal and uses a 2D CNN on the spectrogram,
while a parallel branch uses a 1D CNN on the input TD signal. The inverse short-time Fourier transform is taken at the
output of the spectrogram CNN to recover a TD signal, which is then added to the output of the 1D CNN to produce the
final prediction. In each of these networks, the MSE loss is computed both between the TD prediction and raw signal
waveform, and between the spectrogram prediction and the spectrogram of the raw signal. The relative weighting of the
two losses can be tuned as hyperparameters, and the error signal is backpropagated through the STFT layers to train the rest
of the network. However, training on the spectrogram results in large errors, as shown in Figure 5] Residual layers may
have to be added or adjusted to improve the spectrogram loss, but time constraints prevented us from any further tuning.

5 Experiments/Results/Discussion

5.1 Hyperparameter Search

We experimented with multiple architectures, but we chose a 1D CNN archi-
tecture for the final network which we implemented in Keras [13][14]. Due
to limited time constraints, we were only able to do a modest hyperparameter
search on the network. We chose to search the space of the learning rate (o),
the momentum parameter (1), and the mini-batch size. We experimented
with the learning rate from .001 to .01, although choosing values from .001 Figure 5: Spectrogram Training Waveforms

to about .008 gave marginally different values in both training loss and

validation loss. An interesting thing to note was that pushing the learning rate to .01 and above caused the training loss to
increase rapidly between and within epochs. The actual weights are likely small values in the trained network, so it is very
possible that the glorot initialization on all layers are already reasonable values, and pushing them by even .01 causes the learning
algorithm to leave the optimal region of the cost space. We found that .002 gave the best training loss and validation loss in our
experiments. We also experimented with changing the momentum parameter, but we only ran experiments with .85 and .9 due
to limited time. We found that 8; = .85 gave better loss without introducing variance. Finally, we tried mini-batches of size
64, 256, and 512. While epochs trained faster when using size 64, which is likely due to the underlying implementation and
architecture of the GTX 1080 used for training, the variance between the training loss and dev loss decreased as we increased the
batch size. Thus, the batch size we used for training was 512.

5.2 Neural Signal Analysis

The ultimate goal of neural interfaces is to record "just enough" information from neural tissues that allow clear understanding
of the cell types in the case of vision restoration. As mentioned in Section [3] our train/dev/test split was atypical. According
to empirical evidence from Murmann [1], for reasonable confidence in cell type classification, a recording should surpass six
minutes in length. To that end, we left the first ten minutes of our raw dataset (totalling about 20 million examples) to be used for
this final evaluation. Therefore, to effectively evaluate our signal reconstruction performance, we form a 10 minute recording
from reconstructed spikes and perform neural signal analysis with the-state-of-the-art neurology processing software Vision to
identify cells. The analysis performs clustering to categorize different neural cell types and forms a dictionary of neurons, shown

as Fig. [

2015-11-09-3/dats000
201511 09-3daracnn 2015-11-09-3/data000 150
cells F

OFF parasol cells
56.7 4. 7pn

RF DI
pike

<. 7pm
I 13792

(a) 116 On Parasol Cells Mosaic from Raw Data (b) 202 On Midget Cells Mosaic from Raw Data (c) 150 Off Parasol éells Mosaic from Raw Data
2015-11-09-3/data000
2015-11-09-3/data000 148 OFF Parasol ncl cells
202 0N cells

FF Diam: 94.5x.8um
spikes/cell: 4852

a0

(d) 114 Reconstructed On Parasol Cells Mosaic (e) 195 Reconstructed On Midget Cells Mosaic (f) 147 Reconstructed Off Parasol Cells Mosaic

Figure 6: Mosaic Recovery Result.

12 bit 10 bit 8 bit
Conventional 0 5.8 279

5.3 Results

| wire 23.5 325 42.1
. 74 198 559

The primary metric we used in evaluating our network was MSE. The training and) _X 27; 37;
dev loss that we achieved on the final choice of hyperparameters were 23.99 and 2 wire 31x 81x 228x
24.88, respectively. Comparing to the baseline reported from [1], our reconstructed . 224 325
waveform has a lower MSE than the 8-bit resolution readout with no compression, i 13x 35x 96x
8 wire 252

6x 15x 42x

4

Figure 7: MSE and Compression Rate vs. Bit
Resolution and Wiring Scheme [1]

Table 1: Neural Signal Analysis Result
H Mosaic Recovery ON Parasol ON Midget | OFF Parasol H

Ground Truth / [cells] 116 202 150
Baseline /[cells] 96 (83%) Not reported 121 (81%)
This Work 114 (98.27%) | 195 (96.50%) 147 (98%)

shown as Fig[7} which means we effectively achieved more resolution. At the same time, our MSE is on par with the 4-wire-10-bit
configuration, which means we effectively achieved an extra 16x compression at the same level of recording performance. After
being confident that the MSE was low enough and that we were not overfitting too much to the training set, the final step in
evaluating our system was to use the network to reconstruct raw signals for cell type classification. Thus, our final metric is
cell type classification accuracy. We find that with our reconstructed spikes, Table|l|shows that we are able to correctly recover
98.2% of ON Parasol Cells, 98% of OFF Parasol Cells, and 96.50% of ON Midget cells. Qualitatively, we can see from the
mosaic recovery results that the cells we find are very similar, as shown in Fig. [].

5.4 Discussion

One of our biggest concerns was overfitting our training set. The low variance makes us confident that we have not overfit,
further shown by one of these training examples in Figure [§]

compressea.. . recen

(a) Compressed spike example (b) Reconstructed spike example (c) Raw spike example

Figure 8: Output of network

The portions of the signal that correspond to smaller peaks and troughs in the raw signal are compressed away to 0, and the
reconstructed signal doesn’t show too much of that small noise. One thing we noticed was that when we tried training on
smaller portions of the training set was that these zero-valued portions in the compressed form looked much more akin to the
raw portion, which we took to be some form of overfitting. When training on the whole training set, however, we saw these
zero-valued portions smooth out. This supports not only our claim that we have not overfit the training data, but the claim that
these zero-valued portions in the compressed waves correspond to actual random noise in the raw waveform. If there was a
non-random trend in these areas shared between all training examples, then we would see that trend show up in the reconstructed
forms. If this portion becomes smooth and zero-valued after averaging over all 38 million examples, then it seems that it is truly
near random. In this way, the dataset itself has a regularizing effect during the training of the network.

6 Conclusion/Future Work

To alleviate the requirements in power and transmission bandwidth of retinal implants for accurate retinal characterization, we
developed a deep learning model to reconstruct raw signals from compressed retinal neuron responses. We showed that we are
able to achieve 98% cell-type classification accuracy, which allows an extra 16x compression at the same performance level as a
12/10 bit compression strategy. Our highest performing algorithm was a 1D-CNN architecture that was trained with an Adam
optimizer on mini-batch gradient descent. This algorithm likely performed better than others because of the simplicity of the
compressed waveforms. The network only needed to learn simple waveform shapes that are salient to the vision software, and so
it makes sense that our simplest approach gave the best results. If we had more time, we would likely do even more training (our
capacity to train ended up being limited by time constraints and our large dataset) and push the size of our network down to see
the smallest network that can achieve the same level of performance. Finding a smaller network would lower the overall energy
of the system from end-to-end and even allow for quick inference on potentially less powerful devices.

7 Contributions

Max wrote the code for automating the data processing pipeline and formatting for training. He also wrote the main 1D CNN
model as well as all other training infrastructure. Andrew worked on different models that leveraged different aspects of the
spectrogram. Pumiao was the domain expert and helped with developing the dataset and guiding the results.

8 Acknowledgement

We would like to thank Prof. E.J Chichilnisky and his students for providing us the dataset and generous help on guiding us to
perform neural signal analysis. We would also like to thank Dante Muratore and Pulkit Tandon for building the compression
model.

References

[1] D.G. Muratore, et al. “A Data-Compressive Wired-OR Readout for Massively Parallel Neural Recording,” 2019 IEEE International
Symposium on Circuits and Systems (ISCAS), 2019, doi:10.1109/iscas.2019.8702387.

[2] C.M. Hyun, et al. “Deep learning for undersampled MRI reconstruction,” Physics in Medicine and Biology, 63 (2018) 135007 (15pp)
doi:10.1088/1361-6560/aac71a

[3] O. Watts, C. Valentini-Botinhao, and S. King, "Speech Waveform Reconstruction Using Convolutional Neural Networks with Noise and
Periodic Inputs," ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton,
United Kingdom, 2019, pp. 7045-7049.

[4] O. Watts, C. Valentini-Botinhao, and S. King, “Fast and efficiently trainable neural speech waveform generator,” 2019. [Online]. Available:
https://github.com/CSTR-Edinburgh/waffler

[5] K.W. Choi, et al. “Kapre: Keras audio preprocessors,” 2018. [Online]. Available: https://github.com/keunwoochoi/kapre

[6] V. Kuleshov, S.Z. Enam, and S. Ermon. "Audio super resolution using neural networks," Workshops at International Conference on
Learning Representations (ICLR), 2017.

[7] K.Y. Park and H.S. Kim, "Narrowband to wideband conversion of speech using GMM based transformation," 2000 IEEE International
Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.OOCH37100), Istanbul, Turkey, 2000, pp. 1843-1846
vol.3.

[8] K. Li, Z. Huang, Y. Xu, and C.H. Lee. "DNN-based speech bandwidth expansion and its application to adding high-frequency missing
features for automatic speech recognition of narrowband speech," Sixteenth Annual Conference of the International Speech Communication
Association, 2015.

[9] Y. Nakatoh, M. Tsushima, and T. Norimatsu, "Generation of broadband speech from narrowband speech using piecewise linear mapping,"
Proceedings of EUROSPEECH, Vol. 3, pp. 1643-1646, 1997.

[10] J.A. Alexander and M.C. Mozer, "Template-based algorithms for connectionist rule extraction," G. Tesauro, D.S. Touretzky and T.K. Leen
(eds.), Advances in Neural Information Processing Systems 7, pp. 609-616. Cambridge, MA: MIT Press, 1995.

[11] J.M. Bower and D. Beeman, The Book of GENESIS: Exploring Realistic Neural Models with the GEneral NEural SImulation System. New
York: TELOS/Springer—Verlag, 1995.

[12] M.E. Hasselmo, E. Schnell, and E. Barkai, "Dynamics of learning and recall at excitatory recurrent synapses and cholinergic modulation
in rat hippocampal region CA3," Journal of Neuroscience, 1995, 15:5249-5262.

[13] E. Chollet, et al., "Keras,” 2015

[14] M. Abadi, P. Barham, J. Chen, Z. Chen, et al. "Tensorflow: A system for large-scale machine learning," 12th USEN I X Symposium on
Operating Systems Design and Implementation (OSDI 16), 2016, pp. 265-283.

	Introduction
	Related work
	Dataset and Features
	 Methods
	Experiments/Results/Discussion
	Hyperparameter Search
	Neural Signal Analysis
	Results
	Discussion

	Conclusion/Future Work
	Contributions
	Acknowledgement

