Transformer Model for Mathematical Reasoning -
CS 230 Final Report

Will White
Department of Mathematics
Stanford University
will2@stanford. edu
Justin Dieter
Department of Mathematics
Stanford University
jdieter@stanford.edu

8 December 2019

1 Abstract

One chief goal of natural language processing is to encode the embedded logic
of natural language. Hence, a potentially interesting research direction is to
test the limits of the complexity of the logic that can be learned from symbolic
statements of language. To this end, we were interested in deploying a modern
sequence model, specifically a Transformer model, on a dataset of a wide range
of math problems.

2 Introduction

In a world where highly dense and technical academic research abounds in
text form in journals and databases, there is utility in automatically searching
through articles to cull research that might together lead to further findings.
For example, in an exciting 2019 study published in Nature [2], a team of re-
searchers used Word2vec to successfully predict the existence of now known
thermoelectric materials from earlier research in the field. Generalizing the
search to the most technical of literature necessitates a flexible understanding
of mathematical formulae in the context of natural language.

With this distant vision of automatic research in mind, the work begins with
encoding the logic of basic math problems. The input to our model is a text
string corresponding a problem statement, and we use a Transformer model to
output a text string meant to be the answer to the mathematical task given.

3 Related Work

In their 2019 paper [3], Google DeepMind introduced the dataset of math prob-
lems used in this project, as well as good performance on most tasks with a
Transformer. The main difference between the approach taken in this paper
versus ours is tokenization. Deepmind takes a character-by-character approach
for all string data, but our model tokenizes each English word while tokenizing
each chunk of mathematical symbols character by character.

The current state of the art in this dataset is a Tensor Product Transformer
[1]. This model adds explicit relational encoding to each multi-headed attention
layer by computing an additional relational vector, which is adjoined to the
multi-headed attention weighted vectors by the tensor product.

4 Dataset and Features

The dataset is organized into different classes of problems including algebra,
arithmetic, comparison, probability, calculus, and many more. The dataset
consists of pairs of text strings corresponding to problem statement and answer.
The problem statements contain English words as well as mathematical symbols,
and while most answer data takes the form of single numbers, answers can be
mathematical expressions as well as words. The following examples from the
dataset capture the range of input and output well:

(1) Problem: Solve -n = 11*z - 14*z 4+ 17, 22 = 3*z - 2*n for z. Answer: 4

(2) Problem: Is 1128546091 a prime number? Answer: False

(3) Problem: Suppose 3*b - 51 = -9. Let t(n) be the first derivative of
5 - b*n**3 4+ 13*n + 29*n - 9*n - 1. Differentiate t(v) wrt v. Answer: -84*v

Due to memory constraints, we trained on 40 percent of the available 2 million
training examples for a total of 800,000 training examples. As discussed before,
the data has been tokenized as whole words if present in the English dictionary,
and character-by-character for mathematical expressions. In the text data for
each training example, problem and answer are separated by a period or question
mark, so examples are split accordingly. The model was trained with a mini-
batch size of 400. All training data is from the DeepMind GitHub for the
dataset, available at https://github.com/deepmind/mathematics_dataset.

5 Methods

The model used is a Transformer as laid out by tutorials referenced here as [4],
[5], [6]. The Transformer model makes use of attention vectors, which tell the al-
gorithm which parts of the input sequence are more important when computing
the next parts of the output sequence. Attentions are computed by taking the

https://github.com/deepmind/mathematics_dataset

sum of hidden state vectors generated by the encoder layers, which are weighted
by their softmax value. This makes the most likely hidden states factor more
heavily into the next output generation step.

The hyperparameters of our implementation are as follows: embedding di-
mension of 200, 6 encoder layers, 6 decoder layers, 8 attention heads, feed-
forward dimension of 2048, and dropout with probability 0.1. The loss function
used is cross-entropy. The optimizer used is Adam with 5; = 0.9, 82 = 0.995
and € = le — 9, and a learning rate of o = 0.0001.

6 Experiment, Results, Discussion

The performance of the model is evaluated on both interpolated and extrapo-
lated test sets. That is, the interpolated test set comes from the same distribu-
tion as the training data, and the extrapolated test set is generated by creating
new examples with, for example, larger numbers, more compositions, or larger
samplers (for probability questions). Accuracy is assessed by assigning a 1 if the
predicted output matches the answer label exactly and a 0 otherwise, and tak-
ing the proportion of correct predictions over the total number of test examples.
After a few days of training on an NVIDIA Titan RTX, and over 250,000 train-
ing epochs, we can exhibit a steadily decreasing loss function and the accuracy
plots on Page 4, indicating interpolation accuracy as high as approximately 0.41
and extrapolation accuracy as high as approximately 0.38.

7 Conclusion, Future Work

Ultimately, more compute is required to reach the accuracy levels of 0.76 inter-
polation and 0.50 extrapolation reported by DeepMind. Note that the accuracy
for interpolation and extrapolation are not too far apart at approximately 0.03,
so the degree of overfitting is acceptably low. This may be in part attributed
to the use of dropout. Also, clearly we would’ve liked to do more experiments
and hyperparameter tuning, but due to long training time and short time in the
quarter, we were unfortunately left with this single experiment.

Ultimately, even the state of the art accuracy marks are significantly less
than human level accuracy (for properly trained humans), so there is room for
trying new algorithms on this dataset. DeepMind observes that their algorithm
performs poorly on problems involving ”several intermediate calculations”, so
future work might include memory augmented architectures such as a Neural
Turing Machine in the hope that the information of these intermediate steps
might be learned and stored.

0.35

0 40k 80k 120k 160k 200k 240k

Figure 1: Interpolation accuracy - vertical axis is accuracy and horizontal axis
is number of training epochs.

04
0.35

0.3

[0] 40k 80k 120k 160k 200k 240k

Figure 2: Extrapolation accuracy - vertical axis is accuracy and horizontal axis
is number of training epochs.

0 20k 40k 60k 80k 100k 120k 140k 160k 180k 200k 220k 240k 260k

Figure 3: Loss function - vertical axis is the value of the loss function and
horizontal axis is the number of training epochs.

8 Contributions

e Justin Dieter (who is enrolled in CS 330 and using this dataset further
in a multitask setting) did the bulk of the coding and provided the plots
necessary for evaluating the model.

e Will White helped with the tokenization step of the data pipeline and
wrote up the final report and poster.

References

[1] Imanol Schlag, Paul Smolensky, Roland Fernandez, Nebojsa Jojic, Jurgen
Schmidhuber, and Jianfeng Gao. Enhancing the transformer with explicit
relational encoding for math problem solving. ArXiv, abs/1910.06611, 2019.

[2] Tshitoyan, Vahe Dagdelen, John Weston, Leigh Dunn, Alexander Rong,
Zigin Kononova, Olga Persson, Kristin Ceder, Gerbrand Jain, Anub-
hav. (2019). Unsupervised word embeddings capture latent knowledge from
materials science literature. Nature. 571. 95-98. 10.1038/s41586-019-1335-8.

[3] David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli.
Analysing mathe- matical reasoning abilities of neural models. ArXiv,
abs/1904.01557, 2019.

[4] SEQUENCE-TO-SEQUENCE MODELING WITH
NN.TRANSFORMER AND TORCHTEXT,

https://pytorch.org/tutorials/beginner/transformer_tutorial.html

[6] How to use TorchText for neural machine translation, plus hack to make it
5x faster, https://towardsdatascience.com/how-to-use-torchtext-for-neural-
machine-translation-plus-hack-to-make-it-5x-faster-77f3884d95

[6] The Annotated Transformer, https://nlp.seas.harvard.edu/2018/04/03 /attention.html

https://pytorch.org/tutorials/beginner/transformer_tutorial.html
https://towardsdatascience.com/how-to-use-torchtext-for-neural-machine-translation-plus-hack-to-make-it-5x-faster-77f3884d95
https://towardsdatascience.com/how-to-use-torchtext-for-neural-machine-translation-plus-hack-to-make-it-5x-faster-77f3884d95
https://nlp.seas.harvard.edu/2018/04/03/attention.html

	Abstract
	Introduction
	Related Work
	Dataset and Features
	Methods
	Experiment, Results, Discussion
	Conclusion, Future Work
	Contributions

