Computing Nonlinear Active Subspaces for Highly Parameterized

Optimization Problems using Autoencoders

Gabriele Boncoraglio, SUNet ID: gbonco

Abstract

A novel approach to solving highly parameterized optimiza-
tion problems is introduced specifically related to problems
involving running expensive computer simulations such as
aircraft design. These optimization problems require run-
ning expensive computational fluid dynamics (CFD) simula-
tions in order to evaluate objective function and constraints.
In particular, very often, the number of computer simula-
tion increases when the optimization parameter space is high-
dimensional making the problem computationally intensive.
Various approaches have been proposed in literature to re-
duce the dimensionality of the problem, such as the method
of active subspace which consist in a linear approximation of
the subspace. This method is not suitable when the subspace
is nonlinear. The approach proposed consists of using an au-
toencoder in order to have a nonlinear approximation of the
subspace. Different autoencoder architectures are compared
in performances and accuracy. Finally, the proposed approach
is applied first to a series of unconstrained optimization prob-
lems and finally to the design optimization of the mAEWing2
aircraft. The preliminary results show that an autoencoder
can efficiently represent a nonlinear manifold and reduce the
dimensionality of the problem allowing to solve the optimiza-
tion problem is a subspace and reduce the number of iteration
for convergence.

1 Introduction

MultiDisciplinary Optimization (MDO) problems arise in many
engineering applications such as design of an aircraft and in-
volves running very computationally expensive simulations.
These optimization problems are challenging when the num-
ber of optimization parameters is relatively large and
the model involves an expensive computer simulation. There-
fore, one possible approach is to reduce the number of pa-
rameters for the optimization problem, solving the optimiza-
tion problem on a low-dimensional subspace and permitting
otherwise infeasible studies. Omne technique used to com-
pute this subspace is the method of Active Subspace (AS)[1]:
many multivariate functions in engineering models vary pri-
marily along a few directions in the space of input parame-
ters. The method of active subspaces detects the directions of
the strongest variability using evaluations of the gradient and
subsequently exploits these directions to solve an optimization
problem on a low-dimensional subspace. The key components
of active subspace methods are the left singular vectors of M,
a matrix whose elements are partial derivatives of the simu-
lation’s input/output map. Let us consider a scalar objective

function f(x) € R of a vector x € RN=, and its gradient
Vf(x) € RNz, First, the gradient of f at m points needs to
be sampled: {Vf(x1),---,Vf(x;),- -,V f(xm)}. Then the
matrix M contains a set of m pre-computed gradients in the
parameter space and its SVD can be computed:

0 V.
Etr Vtr
1

with U, € RN=X"=_where n, is the dimension of the low-
dimensional active subspace. Selecting the right n, dimension
of the active subspace is not a easy task. Usually, looking
the singular values, the dimension of U, is determined by
choosing the n, biggest singular values. Finally a low-rank
active subspace of the input parameters is found:

e

M 5500)] = (5][

x ~ U,x, (2)
where x,. is the reduced set of coordinates in the active sub-
space, with x,, € R™. The challenge is that AS does not
always work for every problem. In fact, since the approx-
imation in (2) is a linear approximation, it cannot capture
nonlinear effects. Hence, the idea of this paper is to use a
non-linear approximation for the active subspace. In order
to do this, the idea is to use an autoencoder. The aim of
an autoencoder is to learn a representation (encoding) for a
set of data, typically for dimensionality reduction. Hence,
the idea, is to learn a low-dimensional representation of the
gradient using a nonlinear function g which comes from the
decoder of the autoencoder and using the following non-linear
approximations for the input parameters:

(3)

x ~ g(xr)

The method of active subspace uses the gradients
{Vf(x1), -+, Vf(xm)} to learn a linear low-dimensional
representation of the input parameters x ~ U,x,. On the
other hand, the idea of this paper is to use an autoencoder
and the gradients {V f(x1), -+, Vf(xm)} to learn a nonlin-
ear low-dimensional representation of the input param-
eters x & g(x,). Once the low-dimensional active subspace is
computed, the optimization problem is solved in the subspace.

2 Design optimization problem

The aim of this paper is solving efficiently highly parameter-
ized optimization problems such as the design optimization of
the mAEWing2 aircraft. This optimization problem has the
following definition:

maximize
x€R33

. X (1)
Sllb eC(‘() —
L

where L(x) and D(x) are respectively the lift and drug gen-
erated by the aircraft. Lg is the lift generated by the initial
configuration of the wing and x“* and x'® are the upper and
lower bounds for the optimization parameters. The set of 33
parameters x € R3? modify the shape of the wing. Figure (1)
and (2) describe in more details these 33 parameters.

Figure 1: Left: {z', %} modify the dihedral angle of the wing.
Right: {z%} modifies the sweep angle of the wing.

Figure 2: {z%, -, 233} modify the airfoil shape of the wing.

In order to compute the lower-dimensional subspace with
the autoencoder, gradients of the objective function needs to
be computed and used as training data. For the mAEWing2
problem, the gradient computed at point x; is defined as:

L(x))? Lix;) \2
Vi) = v (LED) 2 2(553) o (53)
’ D(x;) ozt 7 92®

(5)
where 2 is the component i of the vector x;. Next section
describes how the dataset is generated.

3 Dataset construction

In order to build a dataset for training and testing the autoen-
coder, gradients of the objective function need to be com-
puted. The data is generated using computer simulations.
More specifically, for a given vector of parameters x;, the
gradient V f(x;) can be computed analytically using a com-
puter simulation (if the objective function has an analytical

form, the gradients can also be computed directly). Let’s as-
sume N is the size of our dataset. Then, N points in the
parameter space are sampled randomly using latin hypercube
sampling: {xi,---,xny}. After, sampling these points, the
gradients are computed at these randomly sampled points:
{Vf(x1), -+, Vf(xn)}. Thus, the dataset has dimension of
N units and contains N gradients vectors. Because comput-
ing N gradients using computer simulation is expensive for
building the database, N has to be small. Therefore, because
the dataset is not very large, 70% of the dataset is used for
the training and 30% as dev/test set. The data is randomly
shuffled before splitting the data into the different sets. More-
over, the autoencoder is an unsupervised application of neural
networks and therefore it only uses inputs (the gradients com-
puted).

3.0.1 Choosing the size of the dataset N

In order to choose the size of the dataset, an iterative process
is used. An initial guess for IV is the dimension of the param-
eter space, N = N,. The dataset is generated and the data
is splitted into training and dev set. Once the autoencoder is
trained, the loss function (which will be described in a later
section) is computed on the training and dev set. If the loss
of the dev set is high compared to the loss of the training
data, then more data is collected: Npew = N + N,. The
process is repeated until the loss function on both training
and dev set gives similar values. This process of choosing N
iteratively allows to have a small dataset and a model that
does not have high variance. Moreover, this iterative process
is feasible since training the autoencoder is not computation-
ally expensive and it a has a small cost compared to the cost
of generating the dataset using computer simulations. Next
section describes different autoencoder architectures proposed
for the task of computing the active subspace and the training
strategy for these models.

4 Model description and training

4.1 Autoencoder architecture

The purpose of the autoencoder for this project is to find la-
tent lower-dimensional state-space of the dataset of gradients
pre-computed. For a given input vector V f(x;), the encoder
computes a nonlinear mapping of the inputs as

x,, = h(Vf(x,),©.) (6)
where x,, is the lower-dimensional representation of the input
Vf(x;) and h(-) is a mapping nonlinear function: h : RV= —
R", @, represent a set of parameters of the encoder. The
encoded features, x,,, are then decoded to reconstruct the
given input vector V f(x;) using

Vfxi) = g(xr,,©4) (7)

where Vf(x;) is the approximated reconstruction of the in-
put Vf(x;) and g(-) is a mapping nonlinear function: g :
R™ — RM=. @, represent a set of parameters of the de-
coder. Figure (3) shows the autoencoder architecture. Once

the autoencoder is trained, the final purpose is using the en-
coded features, x, as optimization variables for solving the
optimization problem in the nonlinear active subspace.

Reconstructed

Input input

{ Decoder

{ glxr) ‘

Encoder ‘ x
h(Vf(x)) ‘ i

Vi) — Vi)

Figure 3: Autoencoder for learning a low-dimensional repre-
sentation of the gradient V f(x): Vf(x) =~ g(x,)

Three different architecture are chosen and compared:

1. a fully-connected autoencoder which only consists of
Npe fully-connected layers in the encoder and Npo
fully-connected layers in the decoder

2. a convolutional autoencoder which only consists of N one
convolutional layers with 1D filters in the encoder and
Ncony transposed convolutional layers in the decoder

3. an autoencoder with N¢go,, convolutional layers with
1D filters and one fully-connected layer in the encoder
and one fully connected layer and Ngopn, transposed
convolutional layers in the decoder

The exponential linear unit (ELU) activation function is used
for nonlinearity in all the architectures. The hyperparameters
of the architecture, number of layers and number of hidden
units for fully-connected layers or number of filters for convo-
lutional layers are chosen using a grid search and evaluating
the accuracy of the architecture on the dev set after being
trained using the training set. Next subsection describes how
accuracy is defined for the autoencoder.

4.2 Training strategy

In order to train the autoencoder, the training set is used.
The reconstruction error (RE) for the single input V f(x;) is
computed as:

“<wm>
oxJ

2
RE(Vf(x).0..0,) =Y - ol (0.). 0)
j=1

(8)
where ®, and ©, represent a set of parameters of the autoen-
coder, g(-) is the nonlinear decoder function and g(x,,)’ rep-
resent the j-th component of the reconstructed vector. During
the unsupervised training, the network tries to find the op-
timal values of the set of parameters ®, and ®, in order to
minimize the reconstruction error for all the inputs:

m

Loss = % ZRE(Vf(Xi), 0.,0,)

i=1

9)

where m is the number of sample units. Using the loss func-
tion, the accuracy of the autoencoder can be estimated. The

optimization is solved using the adaptive moment estimation
(ADAM) algorithm with a learning rate a = 0.01. This learn-
ing rate, optimal for this problem, is chosen using cross vali-
dation testing several values for the learning rate.

4.3 Model selection

For choosing the autoencoder to use among the three archi-
tectures proposed and the related hyperparameters associated
with it, a grid search is used selecting the model and related
hyperparameters with the smallest loss function evaluated us-
ing the dev set. Finally, once the architecture has been cho-
sen, the loss of the chosen autoencoder is evaluated using the
test set to evaluate the accuracy of the model on an unseen
set of data and avoid overfitting. The hyperparameters to
choose are:

e Number of layers: it ranges between 2 and 5

e For fully-connected layers, number of hidden units ranges
between n, and IV,

e For convolutional layers, number of filters in each layer
ranges between n, and N,, where each filter is a 1D
3 x 1 filter.

where N, is the dimension of the optimization parameter
space and n, is the dimension of the low-dimensional sub-
space. Moreover, the bottleneck layer, the layer which con-
tain the low-dimensional representation of the input gradient
has dimension n,.

5 Results

In this paper the deep learning models are implemented in
Python using Keras, which uses TensorFlow as its tensor flow
manipulation. The deep learning models are trained using the
training set with batch size equal to the number of training
points (mini-batch is not used since the training set is not
large). All the computations are run in a MacBook Pro with
2.5 GHz Quad-Core Intel Core i7 and memory 16 GB 1600
MHz DDRA3.

5.1 Results for model selection

All the models are trained using the same training set and
evaluated using the same dev set. For the purpose of selecting
a model, the mAEWing2 optimization problem is used. The
size of the database is N = 500. After running a grid search
for selecting the model with the lowest dev set loss, the second
architecture, the convolutional autoencoder, is selected. The
lowest loss is equal to Loss = 21.8. The optimal architecture
has 3 layers: the first layer has 33 filters, the second layer has
23 filters and the third layer has 3 filters (equal to n,). For the
first architecture, the autoencoder with fully connect layers,
the lowest loss achieved is 36.6 using 3 layers with 33, 31 and
3 hidden units. For the third architecture, the autoencoder
with convolution and fully-connected layers, the lowest loss
achieved is 36.7 using 3 convolutional layers with the number
of filters equal to 33, 33 and 33 and a fully-connected layer
with 14 hidden units. Finally, using the chosen model, the loss

for the test set is equal to 24.7. Thus, the model generalize
with unseen data. In the process of choosing the best model,
different activation functions are tested, such as RELU,Tanh
and ELU: ELU is chosen because of the performances. Next
section shows the autoencoder applied to solving optimization
problems and its performances are compared with baseline
methods.

5.2 Validation results

In order to validate the proposed methodology, different op-
timization problems are solved using three different method-
ologies:

1. using the full dimensional space:

miny f(x) with optimization variables x € RN«

. using linear active subspace, x ~ U,X,:
miny, f(U,;x,) with optimization variables x,. € R"=

using nonlinear active subspace, x = g(x;):
miny, f(g(x,)) with optimization variables x,. € R"=

where N, < n,. First, four unconstrained optimization prob-
lems are solved. Then, the mAEWing2 design optimization
problem is solved.

5.2.1 Unconstrained optimization

The four unconstrained optimization problems used are bench-
mark problems used in large scale optimization described [2]
and [3]:

e Rastrigin function

(global minimum is f(0,---,0) =0):
N,
f(x) = 10N, + Z (27 — 10cos(2mx;))
i=1
e Ackley function
(global minimum is f(0,---,0) =0):

o) = —ape (02 T s o)

+204+-e¢

e Rosenbrock function
(global minimum is f(1,---,1)

0):

Ng—1

Z (100(%? — xi+1)2 + ((ﬁl — 1)2>

i=1

fx)

e Styblinski-Tang function
(global minimum is

f(—2.903534, - - - , —2.903534) = —39.16617N,,):

Eﬁi’l x} — 1627 + bx;
2

fx) =

The optimization algorithm used to solve the problems is the
genetic algorithm differential evolution. The maximum num-
ber of iteration is set to 500 and population size is 30. For all
the optimization problems, the dimension of the optimization
parameter space is N, = 33. The dimension of the subspace
is n, = 2 for both linear and nonlinear active subspace.

Table 1: Summary for dataset construction and training

Function PRPITE active subupace [active subspace 1]
Rastrigin 0.284 0.004 3.018
Ackley 0.070 0.004 3.014
Rosenbrock 0.052 0.004 3.581
Styb.-Tang 0.193 0.004 3.143

Table 2: Summary for the optimization history

Function Full Found linear Found | nonlinear Found
space |[s] sol? A.S. [s] sol? A.S. [s] sol?
Rastrigin 53.9 NO 0.5 YES 2.7 YES
Ackley 33.8 YES 0.4 YES 2.5 YES
Rosenbrock 31.6 YES 0.1 NO 1.8 YES
Styb.-Tang 26.3 YES 0.2 NO 1.5 YES

Dataset and training The number of gradients collected
for training the autoencoder is N=50 for all the optimiza-
tion problems. The gradients are computed at N randomly
sampled points in the parameter space using latin hypercube
sampling. The same dataset is used for computing the linear
active subspace and nonlinear active subspace using the au-
toencoder. Table (1) shows a summary for the time spent in
seconds for both constructing the database and training the
models for linear active subspace and nonlinear active sub-
space. The training of the linear model includes only com-
puting the SVD for the matrix of gradients. For training
the autoencoder, The ADAM algorithm is used with a learn-
ing rate of 0.01, a validation split of 0.2 and early stopping
is used to avoid overfitting. The table shows that the time
for constructing the dataset and training is very small. This
is because for all the optimization problems considered, the
objective functions has an analytical form and therefore com-
puting N = 50 gradients is not computationally expensive.
Additionally, training both the linear and the nonlinear model
is also not expensive since the size of the dataset is small.

Results Once all the models are trained, the optimization
problems are solved using three methodologies: solving the
problem using the full parameter space, solving with linear
active subspace and nonlinear active subspace. Figure (4)
shows the optimization history for the four optimization prob-
lems considered, where the horizontal axis represents the it-
eration and the vertical axis represents the objective function
value. It can be observed that for all optimization problems,
the methodology using nonlinear active subspace converges to
the global optimal point and has the smallest number of iter-
ations; moreover, both the methodology using the full space
and the linear active subspace fail to find the global optimal
point in at least one or more cases. Finally, table 2 shows the
time spent for solving the optimization problems and whether
the algorithm has found the solution of the problem. Both
linear and nonlinear active subspace methodologies converge
faster than the full space methodology.

Figure 4:

Upper left: optimization of the Rastrigin function,

Upper right: optimization of the Ackley function,

Lower left: optimization of the Rosenbrock function,
Lower right: optimization of the Styblinski-Tang function.

Red curve: full space, green curve: linear active
subspace, blue curve: nonlinear active subspace.

Table 3: Summary for dataset construction and training

Computing Training, nonlinear
Problem gradients [hours] active subspace [hours]
mAEWing2 41.25 0.0023

5.2.2 mAEWing2 design optimization problem

The proposed methodology is also applied to a constrained
optimization problem described in eq. 4: the design opti-
mization of mAEWing2 aircraft. The optimization algorithm
used to solve the problems is the Sequential Least Squares
Programming (SLSQP). The maximum number of iteration
is set to 500. The dimension of the optimization parameter
space is N, = 33. The dimension of the subspace is n, = 5
for the nonlinear active subspace. In order to evaluate the
objective function and its gradient for the mAEWIng2 prob-
lem, a computer simulation is run; each computer simulation
is run in parallel using 6 nodes with 16 cores per node for a
total of 96 cores. For this problem the linear active subspace
methodology is not reported because lack of time. In the com-
ing weeks, the author also plan to do a comparison between
the performances of linear and nonlinear active subspace for
the mAEWing2 problem.

Dataset and training The number of gradients used for
training the autoencoder is N=50. The gradients are com-
puted at N randomly sampled points in the parameter space
using latin hypercube sampling. Table (3) shows a summary
for the time spent in hours for both constructing the database
and training the model for nonlinear active subspace. As

for the previous problems, for training the autoencoder, the
ADAM algorithm is used with a learning rate of 0.01, a valida-
tion split of 0.2 and early stopping is used to avoid overfitting.
The table shows that the time for constructing the dataset is
much bigger than the time spent for training. This is be-
cause evaluating the gradient requires running an expensive
computer simulations while training is not expensive since the
dataset is small.

Results
ologies: using the full parameter space and nonlinear active
subspace. Figure (5) shows the optimization history, where
the horizontal axis represents the iteration and the vertical
axis represents the objective function value. It can be ob-
served that the methodology using nonlinear active subspace
converges to a local optimal point and has a smaller number
of iterations. The methodology using full space converges to
a slightly better point. In order to find the global optimal so-
lution of the problem, a global algorithm such basin-hopping
algorithm has to be used which requires more iterations and
the author plans to do it in the coming weeks. The method-
ology using the full space solved the problem in 27.37 hours
while the one with the autoencoder took 20.52 hours. The
methodology with the nonlinear active subspace converged
faster, however it spent 41.25 hours for creating the dataset
for the training. Thus, using a dimensionality reduction tech-
nique, such as linear active subspace or nonlinear active sub-
space, pays out if a global optimization algorithm is used and
many more iterations and function queries are needed (as in
the previous section for the unconstrained optimization ex-
amples). In fact, the initial cost of training and building the
dataset needs to be a small percentage of the total time of the
optimization problem in order to be computationally feasible.

Constraint Function

Objective Function

o Full Space
= Nonlinear

Figure 5: Left: Objective function history, Right: Constraint
function history. Red curve: full space and blue curve: non-
linear active subspace.

6 Conclusion/Future Work

A novel methodology for dimensionality reduction is presented
for solving highly parameterized optimization problems in a
subspace using an autoencoder. Different methodologies are
compared for solving different optimization problems. The
initial results shows that using a nonlinear manifold for rep-
resenting a subspace has advantages especially when a linear
active subspace fails to capture nonlinearities in the problem.
The author plan to study how to make the training of the
autoencoder cheaper and to study the performances of this
methodology in other additional problems.

The optimization problem is solved using two method-

7 Acknowledgments

The author would like to thank the CS230 teaching team for
a great quarter and for teaching many useful concepts related
to Neural networks which can be used for research and work
related tasks.

8 Reference

1 Active subspace methods in theory and practice: Ap-
plications to kriging surfaces. Constantine, Dow and
Wang.

2 Benchmark Functions for the CEC’2013 Special Session
and Competition on Large-Scale Global Optimization.
Li, Tang, Omidvar, Yang and Qin.

3 https://en.wikipedia.org/wiki/Test_functions_for_optimization

