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Abstract 

 
Intracranial hemorrhage is a life-threatening emergency 

and requires immediate attention and treatment. Existing 
processes involve time-consuming manual review of CT 
scans and rely upon assured availability of trained 
radiologists. AI powered ICH detection tools that are 
capable of delivering equally strong performance – hold 
significant potential to improve treatment outcomes. With 
that objective, we have explored and leveraged recent 
advances in deep learning and especially computer vision 
and its application in medical image analysis to train a 
model that reviews a CT image and predicts presence / 
absence of ICH and its 5 sub-types. Our model has been 
built using Transfer Learning with features extracted from 
the DenseNet architecture pre-trained on ImageNet dataset 
and is able to achieve Test set AUC of 0.9329 for ICH 
detection. Model is able to predict with Precision of 51.4% 
and is able to capture 84.2% of ICH positives, while 
delivering an overall Accuracy of 86.4%. To make the 
model interpretable and offer additional inputs to 
radiologists, we have used Class Activation Maps 
approach to build a capability to highlight regions in the 
image that are influencing the network’s decision and are 
potentially the sites of ICH. 
 

1. Motivation 
Intracranial hemorrhage (ICH), bleeding that occurs 

inside the cranium, is a serious health problem requiring 
rapid and often intensive medical treatment. It accounts for 
approximately 10% of strokes in the U.S., where stroke is 
the fifth-leading cause of death. Identifying the location 
and type of any hemorrhage present is hence a critical step 
in treating the patient. 

Computed tomography (CT) is the most commonly used 
medical imaging technique to assess the severity of ICH in 
case of traumatic brain injury. According to the American 
Heart Association and American Stroke Association, the 
early and timely diagnosis of ICH is significant – as this 
condition can commonly deteriorate the affected patients 
within the first few hours after occurrence. 

Traditional methods involve visual inspection by 
radiologists and quantitative estimation of the size of 
hematoma manually. The entire procedure is 
time-consuming and requires the availability of trained 
radiologists at every moment.  

Limitations in the availability or experience of 
clinicians, especially in rural or resource-strapped health 
systems, to diagnose CT brains quickly can cause treatment 
delays. Therefore, automated hemorrhage detection tools - 
capable of providing fast inference that is also accurate to 
the level of radiologists; hold the potential to save 
thousands of patient lives. 

2. Data description 
We have worked on the dataset of CT scan (DICOM) 

images provided by Radiological Society of North America 
for the Kaggle competition - RSNA Intracranial 
Hemorrhage Detection.  

Digital Imaging and Communications in Medicine 
(DICOM) is the standard for the communication and 
management of medical imaging information and related 
data. It incorporates standards for imaging modalities such 
as radiography, ultrasonography, computed tomography 
(CT), magnetic resonance imaging (MRI), and radiation 
therapy. DICOM includes protocols for image exchange 
(e.g., via portable media such as DVDs), image 
compression, 3-D visualization, image presentation, and 
results reporting. 

The labelled training dataset has 753 K images. Each 
DICOM image has the raw pixel array (512, 512) of 
Hounsfield Unit values.  

Hounsfield scale is a quantitative scale for describing 
radiodensity and used universally in CT scanning. HUs are 
obtained from a linear transformation of the original linear 
attenuation coefficient measurement into one in which the 
radiodensity of distilled water at standard pressure and 
temperature (STP) is defined as 0 HU, while the 
radiodensity of air at STP is defined as -1000 HU. Some 
approximate HU values for tissues commonly found on 
head CT scans are as follows: Bone: 1000 HU, ICH: 60 – 
100 HU, Grey matter: 35 HU, White matter: 25 HU, 
Muscle / soft tissue: 20 – 40 HU, and Fat: -30 – -70 HU.   

Because the human eye can perceive only a limited 
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number of grey shades, the full range of density values is 
typically not displayed for a given image. Instead, the 
tissues of interest are highlighted by devoting the visible 
grey shades to a narrow portion of the full density range, a 
process called “windowing”. The same image data can be 
displayed in different window settings to allow evaluation 
of injury to different tissues. In general, head CT images 
are viewed on brain or bone windows to allow most 
emergency pathology to be assessed. 

The DICOM images in the RSNA dataset have the 
associated meta-data related to the Windows used in saving 
the image: Window center, Window width, Rescale 
intercept, Rescale slope. 

CT (computed tomography) is essentially a 
computerized x-ray imaging procedure in which a narrow 
beam of x-rays is aimed at a patient and quickly rotated 
around the body, producing signals that are processed by 
the machine’s computer to generate cross-sectional 
images—or “slices”—of the body. These slices are called 
tomographic images and contain more detailed information 
than conventional x-rays. Once a number of successive 
slices are collected by the machine’s computer, they can be 
digitally “stacked” together to form a three-dimensional 
image of the patient that allows for easier identification and 
location of basic structures as well as possible tumors or 
abnormalities.  

Each DICOM image in our dataset also carries the 
meta-data related to its associated Study & CT Volume: 
Study ID, Sequence IDs, Coordinate positions and 
Orientations; which can be used to create the full stack of 
multiple slices that were captured in the individual study. In 
this dataset, each study stack has 20 – 60 slices. 

Given the objective of identification of ICH & its 5 
sub-types – each observation in the training dataset has a Y 
vector of dimension 6 corresponding to the following 
labels: 1. Epidural (ED), 2. Intraparenchymal (IP), 3. 
Intraventricular (IV), 4. Subarachnoid (SA), 5. Subdural 
(SD), and 6. Any (of the 5 sub-types). An image can have 0 
– 5 ICH sub-type labels. 

 
 ED IP IV SA SD Any
# 3,145    36,118    26,205    35,675    47,166    107,933    
% 0.42% 4.80% 3.48% 4.74% 6.27% 14.34%  

Table 1: Details of ICH events for each of the labels in the training 
dataset 

 
The neurologic consequences of ICH can vary 

extensively depending upon the size, type of hemorrhage 
and location and range from headache to death. The role of 
the Radiologist is to detect the hemorrhage, characterize the 
hemorrhage subtype, its size and to determine if the 
hemorrhage might be jeopardizing critical areas of the brain 
that might require immediate surgery. 

While all acute (i.e. new) hemorrhages appear dense (i.e. 
white) on computed tomography (CT), the primary imaging 

features that help Radiologists determine the subtype of 
hemorrhage are the location, shape and proximity to other 
structures. 

Intraparenchymal hemorrhage is blood that is located 
completely within the brain itself; intraventricular or 
subarachnoid hemorrhage is blood that has leaked into the 
spaces of the brain that normally contain cerebrospinal 
fluid (the ventricles or subarachnoid cisterns). Extra-axial 
hemorrhages are blood that collects in the tissue coverings 
that surround the brain (e.g. subdural or epidural subtypes). 
Patients may exhibit more than one type of cerebral 
hemorrhage, which may appear on the same image. While 
small hemorrhages are less morbid than large hemorrhages 
typically, even a small hemorrhage can lead to death 
because it is an indicator of another type of serious 
abnormality (e.g. cerebral aneurysm). 

 
Table 2: Markers & CT images of various ICH sub-types 

3. Approach 
We began by studying the existing approaches for 

Image classification, object detection and Medical Image 
analysis associated with CT scans & DICOM images. 

To enable rapid prototyping, we created a random 
sample of 100K images (Sample A) from the training 
dataset and split it into: Train (70%), Dev (15%) & Test 
(15%) datasets; ensuring similar distribution of ICH 
labels across the datasets. 

We have considered weighted binary cross entropy 
loss with 2x weightage for label = “Any” as the loss 
metric (on similar lines as the Kaggle competition) to 
evaluate the candidate models. 

 
Equation 1: Weighted binary cross entropy loss 

 
We tried to explore multiple approaches in a systematic 

manner and organized the design & sequence of our 
experiments based on the following dimensions: Data 
pre-processing, Network architecture, Transfer Learning 
and Optimization loss function. 

Data pre-processing: We considered different 
pre-processing strategies ranging from feeding the raw HU 
values to the network to multiple Window based settings – 
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the approach that is used universally by the radiologists. 
These settings map the visual range of the displays to a 
specified window, and assign all HU values outside this 
window range to 0 or U (taken U = 255). Windowing 
functions are defined based on linear or sigmoidal 
conversion as follows [1]: 

 
 

 
Equation 2: Linear window 

 

 

 
Equation 3: Sigmoid window 

 
where WW is Window Width, WL is Window Level or 
Center and epsilon is the margin between the upper / lower 
limits and window end/start grey levels which determine 
the slope at the center (taken epsilon = 1).  

We have evaluated three window settings for the image: 
Brain window (WW = 80, WL = 40), Subdural window 
(WW = 200, WL = 80) and Soft tissue window (WW = 380, 
WL = 40). 

Network architecture: We have tried multiple network 
architectures starting with a simple 2-D CNN with 7 
*(Conv-BN-Relu-MaxPool) + 2*Dense layers wherein we 
fed the 512 x 512 x 1 image to the network.  

Given that CT studies generate a stack of slices, we also 
explored a simple 3-D CNN in our experiments [2]. We 
used the z-coordinate of the position attribute in the 
meta-data to create the right sequence of image slices in the 
stack. Researchers in [3] have observed that a 3D-convnet 
informed by 3 consecutive images (image under evaluation 
and “flanking” images immediately superior and inferior) 
was as accurate as a network that employed 5 or more 
consecutive images, sparing the need for learning even 
more context. Basis this, we restricted the 3-D volume to 3 
consecutive slices and fed to the network the primary image 
slice – flanked by its prior & subsequent image slices. 

We also explored the idea of a CT study being made up 
of a sequence of 2D slices and evaluated combinations of 
CNN + Bidirectional LSTM w/o and w/ Attention 
mechanism [4]. We created Sample B for this experiment 
and considered all the slices which came from the studies 
which had 32 slices each (mode value). This specific 
selection was done just to simplify the implementation by 
ensuring a fixed length sequence. Sample B has 144 K, 18 
K, 16 K images in train, dev and test sets respectively. 

Transfer learning: is a cornerstone of computer vision 
and is quite effective in getting the first version of a 
solution implemented relatively quickly. We tried the 
following classic CNN architectures pre-trained on 
ImageNet for feature extraction and then trained a fully 

connected classifier using those features: VGG-19, 
Xception, NASNet, InceptionResNetV2, EfficientNetB7 
and DenseNet201. Feature extraction was done after 
applying Global Average Pooling on the maps of the last 
convolutional layer of the network.  

In one of the experiments, we intended to fine-tune the 
last couple of layers of the classic networks but could not 
complete it due to computational challenges as the raw data 
had to be streamed during training due to memory 
constraints. This is in contrast to the approach of feature 
extraction wherein the extracted features were persisted 
and were significantly compacter as compared to raw data; 
allowing them to be loaded into memory for training. 

Optimization loss function: Given that it’s a multi-label 
exercise, we went ahead with Binary cross entropy as the 
loss metric for the optimizer. Since, correct detection of 
ICH is relatively more important, the model evaluation 
metric has been kept as a weighted Binary cross entropy 
loss with a weight of 2x to the label “Any ICH”; and we 
hence explored that too as the optimization objective.  

Given that the overall ICH incidence rate in the dataset 
was 14.3% and 4 of the 5 ICH sub-types had incidence rates 
< 5%, we also experimented with Focal loss as the loss 
measure for the optimizer (5). 

We did the entire implementation using Keras within a 
Kaggle kernel running on single Tesla P100 GPU. We had 
also tried multi-GPU training on AWS Sagemaker 
notebook instance provisioned with p3.16xlarge but 
couldn’t execute it successfully. It appears that there are a 
couple of open issues with Keras implementation of 
multi-GPU training (e.g. AttributeError: 
'_TfDeviceCaptureOp' object has no attribute 
'_set_device_from_string'). 

4. Experiment results & key observations 
Experiment #1
Data Sample A
Pre-processing Raw HU
Network 7 *(Conv-BN-Relu-MaxPool) + 2*Dense
Optimization function Weighted Binary Cross Entropy Loss
Train loss 1.744
Test loss 1.722  
 
Experiment #2
Data Sample A
Pre-processing Raw HU
Network 7 *(Conv-BN-Relu-MaxPool) + 2*Dense
Optimization function Un-weighted Binary Cross Entropy Loss
Train loss 1.147
Test loss 1.131  
 
Experiment #3
Data Sample A
Pre-processing Raw HU
Network Pre-trained InceptionResNetV2 w/o Top + 2*Dense
Optimization function Un-weighted Binary Cross Entropy Loss
Train loss 1.198
Test loss 1.200  
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Experiment #4
Data Sample A
Pre-processing Raw HU
Network Pre-trained EfficientNetB7 w/o Top + 2*Dense
Optimization function Un-weighted Binary Cross Entropy Loss
Train loss 1.213
Test loss 1.305  
 
Experiment #5
Data Sample A
Pre-processing Raw HU
Network Pre-trained DenseNet w/o Top + 2*Dense
Optimization function Un-weighted Binary Cross Entropy Loss
Train loss 1.058
Test loss 1.082  
 
Experiment #6
Data Sample A
Pre-processing Raw HU
Network Pre-trained DenseNet w/o Top + 2*Dense
Optimization function Focal Loss
Train loss 1.250
Test loss 1.270  
 
Experiment #7
Data Sample A
Pre-processing Linear Windows: Brain, Subdural & Soft tissue
Network Pre-trained DenseNet w/o Top + 2*Dense
Optimization function Un-weighted Binary Cross Entropy Loss
Train loss 1.264
Test loss 1.240  
 
Experiment #8
Data Sample A
Pre-processing Sigmoid Windows: Brain, Subdural & Soft tissue
Network Pre-trained DenseNet w/o Top + 2*Dense
Optimization function Un-weighted Binary Cross Entropy Loss
Train loss 0.942
Test loss 1.127  
 
Experiment #9
Data Sample A
Pre-processing Raw HU. Primary image with adjacent flanking slices
Network Pre-trained DenseNet w/o Top + 2*Dense
Optimization function Un-weighted Binary Cross Entropy Loss
Train loss 0.995
Test loss 1.088  
 
Experiment #10
Data Sample B (slices from studies which had 32 slices)
Pre-processing Raw HU
Network Pre-trained DenseNet w/o Top + 4*Dense
Optimization function Un-weighted Binary Cross Entropy Loss
Train loss 1.175
Test loss 1.476  
 
Experiment #11
Data Sample B (slices from studies which had 32 slices)
Pre-processing Raw HU. Sequence of 32 slices
Network Pre-trained DenseNet w/o Top + Bi-LSTM
Optimization function Un-weighted Binary Cross Entropy Loss
Train loss 1.084
Test loss 1.534  
 

Experiment #12
Data Sample B (slices from studies which had 32 slices)
Pre-processing Raw HU. Sequence of 32 slices
Network Pre-trained DenseNet w/o Top + Bi-LSTM + Attn.
Optimization function Un-weighted Binary Cross Entropy Loss
Train loss 1.308
Test loss 1.571  
 
Experiment #13
Data Full Dataset
Pre-processing Raw HU
Network Pre-trained DenseNet w/o Top + 4*Dense
Optimization function Un-weighted Binary Cross Entropy Loss
Train loss 0.743
Test loss 0.874  
 
Experiment #14
Data Full Dataset
Pre-processing Raw HU. Primary image with adjacent flanking slices
Network Pre-trained DenseNet w/o Top + 4*Dense
Optimization function Un-weighted Binary Cross Entropy Loss
Train loss 0.553
Test loss 0.886  

Table 3: Experiment results 
 
 Results consistently demonstrate the effectiveness of 
Transfer learning. This is even more striking as we have 
used the pre-trained networks only as feature extractors and 
not fine-tuned their convolution layers. 

Features extracted from DenseNet [6] have delivered 
best performance. DenseNets connect each layer to every 
other layer in a feed-forward fashion.  

 
Figure 1: DenseNet 

 
They have several compelling design advantages: they 

alleviate the vanishing-gradient problem, strengthen 
feature propagation, encourage feature reuse, and 
substantially reduce the number of parameters. 

We also observe that a simple solution based on Raw 
HUs, Transfer learning based on 2-D ConvNet with 
Un-weighted Binary cross entropy loss was able to deliver 
the best result amongst the host of experiments that we had 
carried out. We did not see any incremental lift coming via 
alternate approaches involving Windowing techniques, 
Hybrid 3-D ConvNet, CNN + Bidirectional LSTM and 
Focal Loss. 
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Train Test Train Test Train Test
AUC 0.9843 0.9329 0.9581 0.9004 0.9678 0.9237
P@85pR 61.87% 51.37% 0.42% 0.40% 23.33% 19.99%
ACC@85pR 90.93% 86.41% 0.42% 0.40% 84.66% 82.85%
R@85pR 95.66% 84.16% 100.00% 100.00% 95.88% 86.20%

Train Test Train Test Train Test
AUC 0.9882 0.9567 0.9625 0.9053 0.9735 0.9238
P@85pR 37.32% 31.96% 21.34% 17.61% 26.67% 23.09%
ACC@85pR 94.28% 93.44% 82.92% 80.71% 83.22% 81.05%
R@85pR 95.27% 81.12% 96.35% 84.69% 96.62% 86.86%

Any ICH ED IP

IV SA SD

 
Table 4: Summary statistics of current solution 

 
We are able to achieve Test AUC of 0.9329 for ICH 

detection. Model is able to predict ICH presence with 
Precision of 51.4% and is able to capture 84.2% of ICH 
positives while delivering an overall Accuracy of 86.4%. 

There is scope for improvement in ICH sub-type 
detection where Precision ranges from 18-32% while 
delivering Recall of 80-85%. Results are significantly 
sub-optimal for epidural ICH which is a rare class with 
event rate of 0.42%. 

5. Visualization 
We have used Class Activation Maps [7] based on 

Global Average Pooling to highlight regions in the image 
that are influencing the network’s decision. 

 

 
Figure 2: Class Activation Maps 

  
This approach is extremely helpful in improving the 
interpretability of CNNs and also giving the radiologists 
and doctors additional inputs to assist them in their review. 

Following are few examples where we have used CAMs 
to create the heatmap of activations and then overlaid that 
on the original image: 
Image 1: Ground truth = SA ICH + SD ICH 
 

 

Image 2: Ground truth: ICH = 0 
 

 
 
Image 3: Ground truth: IV ICH + SA ICH + SD ICH 

 
 
Image 4: Ground truth: ICH = 0 
 

 

6. Future work 
We would like to conduct further experiments to enhance 

performance by training on Multiple GPUs via 
TensorFlow, PyTorch, MXNet. This would provide us the 
necessary compute to build a deeper version of transfer 
learning wherein we can fine tune some / all of the layers in 
the convolutional base.  

We would also like to build and test a Hierarchical 
decision system: Stage 1: 2-class Detector – ICH present = 
0/1, Stage 2: 5 class Labeler – presence / absence of each 
sub-type. Stage 2 model would be trained only on ICH 
positive images and is expected to boost system’s 
performance on the task of ICH sub-type identification. It 
would be used to score only those images that get triggered 
by the Stage 1: 2-class Detector.  

Efforts would be put in to improve performance on 
Epidural hemorrhage (rare class) by data augmentations 
and considering an appropriate loss measure like Focal 
loss.  
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