
A method to improve classifier performance using
Generative Adversarial Networks(GANs) based data

augmentation on the Kannada MNIST dataset.
url:https://github.com/prateik/cs230project

Prateik Harwalker
Stanford University

prateik@stanford.edu

Abstract

In this paper, a data augmentation method using Generative Adversarial Net-
works(GANs) to improve the performance of a Convolution Neural Network(CNN)
for the task of classification of Kannada MNIST digits is presented. This tech-
nique replaced 100 images from the original dataset with synthetic generated data.
The test accuracy is shown to improve from 52.28% to 70.07 % and the CNN F1
score(macro avg.) has improved from 0.51 to 0.70.

1 Introduction
Traditionally, Machine Learning/Deep Learning techniques require a large amount of training data to
achieve good results in terms of the test accuracy of the model. It would be interesting to investigate
if we could achieve comparable test accuracy utilizing only a subset of the training dataset. This
would help in reducing the amount of raw training data that would be required for building models.
Therefore, exploring the idea of using data augmentation and GANs for developing synthetic training
data is interesting. The input to the algorithm is a gray scale image which is 28 by 28 pixels in
dimensions. A Convolutional Neural Network (CNN) is used to output a predicted digit out of 10
classes.

2 Related work
Data augmentation using GANs is a relatively new concept and has been explored to a certain extent
in [8] where they have explored generating medical images using GANs and training a ResNet based
architecture using this synthetic data. In [9] they have results to prove that adding synthetic GAN
based images to liver lesion classification has improved the classification performance. The CNN
model for the Kannada MNIST has been studied in detail in this article [12].

3 Dataset and Features
Kannada[1] is a regional language spoken in South India by over 44 million people. The Kannada
MNIST dataset has been recently (Aug 2019) published as part of the paper Kannada-MNIST. [2].

Figure 1: Kannada digits and the corresponding digits in English.[13]

CS230: Deep Learning, Winter 2019, Stanford University, CA. (LateX template borrowed from NIPS 2017.)



The images are 28X28 pixels (gray-scale) with a split of 60000 train and 10000 test image data.
The GAN based architecture was used to generate Kannada MNIST digits and then the dataset was
prepared by labelling the correct class for every image that was human readable as shown in Figure 2.

Figure 2: Sample Kannada digits generated using a GAN.[13]

The training data was normalized by multiplying with a factor (1/255) before training the model.
Keras based ImageDataGenerator was used for Data Augmentation with the following specifications:

Parameter Value
rescale 1/255

rotation range 10
width shift range 0.25
height shift range 0.25

shear range 0.1
zoom range 0.25

horizontal flip False
Table 1: The parameters used for the Keras based Data Augmentation.

4 Methods
Based on the dimensions of the input dataset and the output classes , a Convolutional Neural Network
[7] with the architecture defined in Figure 4 was used for the classification task. Since the output has
multiple classes in the output layer, the Categorical Cross Entropy Loss function is used as defined
below:

Figure 3: The categorical cross entropy loss function used as there are 10 classes in the output layer.

where M is the number of classes(10), y i,c is the ith observation of the cth catergory and p i,c is the
probability predicted by the model for the ith observation to belong to the cth category.

Figure 4: The Architecture used for the CNN and the model specification is defined below.[7]
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d (Conv2D) (None, 28, 28, 64) 640_________________________________________________________________
batch_normalization (BatchNo (None, 28, 28, 64) 256_________________________________________________________________
leaky_re_lu (LeakyReLU) (None, 28, 28, 64) 0_________________________________________________________________
conv2d_1 (Conv2D) (None, 28, 28, 64) 36928_________________________________________________________________
batch_normalization_1 (Batch (None, 28, 28, 64) 256_________________________________________________________________
leaky_re_lu_1 (LeakyReLU) (None, 28, 28, 64) 0_________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 14, 14, 64) 0_________________________________________________________________

2



dropout (Dropout) (None, 14, 14, 64) 0_________________________________________________________________
conv2d_2 (Conv2D) (None, 14, 14, 128) 73856_________________________________________________________________
batch_normalization_2 (Batch (None, 14, 14, 128) 512_________________________________________________________________
leaky_re_lu_2 (LeakyReLU) (None, 14, 14, 128) 0_________________________________________________________________
conv2d_3 (Conv2D) (None, 14, 14, 128) 147584_________________________________________________________________
batch_normalization_3 (Batch (None, 14, 14, 128) 512_________________________________________________________________
leaky_re_lu_3 (LeakyReLU) (None, 14, 14, 128) 0_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 7, 7, 128) 0_________________________________________________________________
dropout_1 (Dropout) (None, 7, 7, 128) 0_________________________________________________________________
conv2d_4 (Conv2D) (None, 7, 7, 256) 295168_________________________________________________________________
batch_normalization_4 (Batch (None, 7, 7, 256) 1024_________________________________________________________________
leaky_re_lu_4 (LeakyReLU) (None, 7, 7, 256) 0_________________________________________________________________
conv2d_5 (Conv2D) (None, 7, 7, 256) 590080_________________________________________________________________
batch_normalization_5 (Batch (None, 7, 7, 256) 1024_________________________________________________________________
leaky_re_lu_5 (LeakyReLU) (None, 7, 7, 256) 0_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 3, 3, 256) 0_________________________________________________________________
dropout_2 (Dropout) (None, 3, 3, 256) 0_________________________________________________________________
flatten (Flatten) (None, 2304) 0_________________________________________________________________
dense (Dense) (None, 256) 590080_________________________________________________________________
leaky_re_lu_6 (LeakyReLU) (None, 256) 0_________________________________________________________________
batch_normalization_6 (Batch (None, 256) 1024_________________________________________________________________
dense_1 (Dense) (None, 10) 2570
=================================================================

For the Generative Adversarial Network [4], the Generator and Discriminator are defined as Fully
Connected Neural Networks as defined in Figure 5.

[h]
Figure 5: The Neural Network on the left in the Generator architecture which used Leaky Relu

activations for the hidden layers and the Tanh activation for the output layer. The Discriminator (NN
on the right) uses the Leaky Relu activations for the hidden layers and the Sigmoid for the output

layer.

5 Hyperparameter Tuning
1. Two different learning rates 0.002 and 0.02 were tested and the former displayed superior
performance metrics on the test dataset.

3



2. Several batch sizes were experimented with as shown in the table below.

Batch Size Test Accuracy(%) Test Accuracy(%with GAN )
64 52.28 70.07

512 66.15 72.8
1024 75.37 68.89
2048 78.89 68.07

Table 2: The test accuracy of the CNN model before and after including synthetic data in the
training for various batch sizes

6 Experiments/Results/Discussion
The CNN based classifier trained with the parameters listed in Table 3.

Hyperparameter Value
learning rate 0.002

mini-batch size 64
epochs 50

Optimizer RMSProp
Table 3: The hyperparameters used for the training.

Figure 6: X axis is the number of epochs and Y axis is the value. The left image is the comparison of
the CNN training and testing loss and the right image represents the accuracy of the CNN. Both of

them are for the real training data only.

One thing to note is that the generated images have significantly higher noise as compared to the
original dataset. A batch of 100 samples in the training data was replaced with the GAN based
synthetic data. One observation of interest was the fact that the introduction of noisy images resulted
in many small value pixels which would have been zeros in the original training data and thus the
sparsity of the input images was reduced and more number of non-zero values were present.

Figure 7: X axis is the number of epochs and Y axis is the value . The left image is the comparison
of the CNN training and testing loss and the right image represents the accuracy of the CNN. Both of

them are for the real and synthetic data combined.

4



Figure 8: The left image is the confusion matrix of the CNN trained with real training data only. The
image on the right is the confusion matrix of the CNN trained with a mixture of real and synthetic

data.

Figure 9: The left image is the performance metrics of the CNN trained with real training data only.
The image on the right is the performance metrics of the CNN trained with a mixture of real and

synthetic data.

7 Conclusion/Future Work
To summarize, it is possible to use GANs for data augmentation, but the generated images would
need to be post processed to reduce the noise in the images to make them usable. The CNN classfier
test accuracy improved by 17.79 %upon introducing GAN based synthetic data into the training
dataset. It would be interesting to explore the idea of generating a larger GAN based synthetic dataset
and performing comparitive analysis.

8 Contributions
The project was taken up as an individual.

References
[1] Web Reference:https://en.wikipedia.org/wiki/Kannada

[2] Kannada-MNIST: A new handwritten digits dataset for the Kannada language, Prabhu, Vinay
Uday, arXiv preprint arXiv:1908.01242, 2019

[3] Website:https://medium.com/@ayman.shams07/data-augmentation-tasks-using-keras-for-
image-data-and-how-to-use-it-in-deep-learning-d4dd24e8ca19

[4] Web Reference:https://machinelearningmastery.com/how-to-develop-a-generative-adversarial-
network-for-an-mnist-handwritten-digits-from-scratch-in-keras/

[5] Web Reference:https://www.kaggle.com/raoulma/mnist-image-class-tensorflow-cnn-99-51-
test-acc

5



[6] Web Reference:https://github.com/prateik/cs230project

[7] Web Reference: https://www.kaggle.com/bustam/cnn-in-keras-for-kannada-digits

[8] GAN Augmentation: Augmenting Training Data using Generative Adversarial Networks,
Christopher Bowles, Liang Chen, Ricardo Guerrero, Paul Bentley, Roger Gunn, Alexan-
der Hammers, David Alexander Dickie, Maria Valdés Hernández, Joanna Wardlaw, Daniel
Rueckert, arXiv:1810.10863 [cs.CV], 2018

[9] SYNTHETIC DATA AUGMENTATION USING GAN FOR IMPROVED LIVER LESION
CLASSIFICATION, Maayan Frid-Adar1, Eyal Klang,Michal Amitai,Jacob Goldberger, Hayit
Greenspan1, arXiv:1801.02385v1 [cs.CV], 2018

[10] Web Reference: https://www.omniglot.com/writing/kannada.htm

[11] Web Reference: https://github.com/keras-team/keras/issues/6444

[12] Web Reference: https://towardsdatascience.com/a-new-handwritten-digits-dataset-in-ml-town-
kannada-mnist-69df0f2d1456

[13] Web Reference: https://www.researchgate.net/figure/Kannada-digits-their-equivalent-english-
digitsf ig1274248237

6


	Introduction
	Related work
	Dataset and Features
	 Methods 
	Hyperparameter Tuning
	Experiments/Results/Discussion
	Conclusion/Future Work 
	Contributions

