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Abstract

Functional Magnetic Resonance Imaging (fMRI) is a technique to measure brain
activity by quantifying blood oxygen level (BOLD signal) (1). There have been
different studies showing that human functional organization undergoes changes
related to age and exhibits sexual dimorphism (2; 3; 4). We aim at leveraging deep
learning techniques to develop a model that can be used to accurately predict the bi-
ological age and sex based on fMRI data. We used the state of art Spatial-Temporal
Graph Convolutional Networks (ST-GCN), which moves beyond the limitations of
previous methods by automatically learning both the spatial and temporal patterns
from data. As the first attempt to apply spatial-temporal convolution on fMRI data,
we overcame the challenge of limited sample size and are able to get to get an
accuracy of 78% for sex and 63% for age (binary classification for young v/s old).
These results manifest ST-GCN as the novel model to predict biological sex and
age from fMRI data.

1 Introduction

Functional MRI (fMRI) is a state of art standard of care for monitoring brain activity in clinical settings.
The goal of this project is to investigate whether functional MRI activities could be used to predict
biological sex and age. Such analysis can enhance the understanding of normal neuromaturation,
characterize developmental disruption caused by neurological disorders, and explain differences
in cognitive performance among men and women. The input to our network was the resting state
functional MRI, which contains the blood oxygen level (BOLD) of the different brain regions. Using
Spatial Temporal Graph Convolutional Network (ST-GCN), we produced the output of biological sex
and agei. The final output of our model was binary sex (male / female) and binary age (young / old
adult).

2 Related work

Our work uses resting state fMRI from Human Connectome Project respository (5). There has been
some previous work on done on this dataset. Zhang 2018 applied a predefined functional template
and partial least squares regression modeling of the brain region for the purposes of sex classification
(6). Quereshi et. al 2019 has achieved 98.09% accuracy for schizophrenia discrimination on resting
state fMRI (7). The previous works on this dataset have relied on hand engineered features of the
brain regions for sex classification. To our knowledge, our work would be the first effort to classify
biological age as well as sex from the HCP dataset using a deep neural network.

'Our code is available at https://github.com/ericksiavichay/cs230-final-project
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The ST-GCN architecture we leveraged in our project was first developed by Yan, Xiong, and Lin
2018 for the purpose of human action recognition based on human skeleton models from video
frames (8). The strength in their approach is that they account for both spatial and temporal features
during the network training. The network has been used on dynamic action recognition in UFC sport
video data (9), or hand gesture recognition (10). Our work includes applying this state of art network
architecture to a different domain. We implemented their network architecture and altered the graph
initialization through directly feeding in the adjacency matrix.

3 Dataset and Features

We used functional MRI scans from the public Human Connectome Project (5). Our data was
pre-processed by the HCP functional pipeline available at the Connectcome DB. Our samples came
from 1108 individuals, consisting of 603 female and 505 male subjects. The subjects came from the
age range of 25 to 37. Each of our pre-processed data file consisted of oxygen level measurement
from different brain regions for the time course of 1200 timesteps from a single subject. We initially
used fine grain measurement from 360 different brain regions for the project, but during the network
training, our network performance increased with coarser grain resolution. Thus, we used downgraded
measurement from 22 different brain region for the network training (11).
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Figure 1: Sample average blood oxygen level (BOLD) resting-state fMRI sessions from a four
arbitrarily chosen representative nodes

We performed data augmentation in which the fMRI data was fragmented by timesteps. The original
file for each individual contained measurement of 22 brain regions over the course of 1200 timesteps;
we split each file into 12 so that each input data contains fMRI measurement of 22 regions for the
duration of 100 timesteps. That increased our sample size from 1106 to 13,082. We used 0.7/0.3
subject level split to create our training / testing set of size 9148 / 3933, respectively.

4 Methods

We used a novel model, called Spatial-Temporal Graph Convolutional Network (ST-GCN) (8) for our
approach to predict sex and age. This involves the use of a graph network as the input to the GCN.
In the case of f-MRI data, the 22 brain regions act as the nodes in the graph and the correlations
between the regions act as the edges. The convolutional operation on graphs consists of the input
feature map residing on a spatial graph. This means that the input feature map has a vector on each
node of the graph.

For modeling the temporal component of the graph, we connected the same brain regions
across consecutive timesteps. The number of timesteps to look ahead is defined by the temporal
kernel size parameter, set to be 5 for our purposes. Figure 2 shows a visualization of the temporal
sequence. The output feature map f,,; for a given input feature map f;,, is defined below (12)

four = D™Y2(A+1)D7V2f,, W (1)

where A is the adjacency matrix, I is the identity matrix, W is the weight matrix, and D is a diagonal
matrix defined as D% = 3 j (A% + I'7). The input feature map can be represented as a tensor of
dimensions (C, V, T'), where C is the number of channels (1 in our case), V' is the number of nodes
in the graph (22 in our case), and 7' is the number of timesteps in the sample (100 in our case after
data augmentation). The graph convolution is implemented by performing a 2D convolution followed
by multiplying the resulting tensor with the normalized adjacency matrix D~/2(A + I)D~'/2,


https://www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release
https://db.humanconnectome.org/

For sex classification, the loss function used was the binary cross entropy/log loss, as shown in
equation 2.
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where m is the number of training samples, y; is the true label of the ith sample, and ¢; is the
predicted label of the ¢th sample.

For age classification, we first tried using a regression model with MSELoss as shown in Equation 3.
We also tried converting the regression model into a classification problem by segregating the ages
into two sets, old and young, based on a threshold of age 28. For this part, the loss function used was
the log loss shown in Equation 2.
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With this given setup, our input functional MRI was used to obtain the node values and edge weights
to initialize the graph structure. The node values corresponded to the blood flow of the region, and
the edge weights were the correlation values between two distinct regions in the brain.

Figure 2: The spatial temporal graph of a fMRI sequence used in this work where the proposed
ST-GCN operate on. Blue dots denote the brain region. The inter-frame edges connect the same
regions between consecutive timelines.

5 Experiments/Results/Discussion

5.1 Network Architecture

The ST-GCN model was similar to the one used in (8). The same model was used for both sex
and binary age classification. A batch normalization layer is used at the start to normalize the data.
The model consists of 9 spatial temporal graph convolutional layers. The first three layers have 64
output channels, the next three layers have 128 output channels, and the last three layers have 256
output channels. The temporal kernel size used is 5. Each ST-GCN unit uses the Resnet mechanism
(13) to prevent the problem of vanishing gradients by skipping some layers. The stride is set to 1
for all temporal convolutional layers except for pooling layers 4 and 7, where it is set to 2. Global
average pooling is performed on the output of the last layer and it is fed into a SoftMax classifier
with two outputs - Male, Female for sex classification and Old, Young for binary age classification.
For predicting age with regression, the model is kept the same except there is no SoftMax classifier at
the end and there is only a single output representing the predicted age. We used the p2.xlarge aws
instance for age and p3.2xlarge aws instance for sex classification.

The models were trained using batch gradient descent with a batch size of 64. This size was chosen
partly because it performed the best based on experimenting with different batch sizes and partly
because the batch size was limited by the compute resources of the aws instances used for training.
The learning rate was initialized to 0.1 for sex and binary age classification. For the full age regression
task, the learning rate of 0.01 was used for 200 iterations in order to fine grain the weight training.
Another parameter to tune was the window size, which selected a random time chunk from the input
data to feed to the network. This was chosen to be 25 for our model. The PyTorch deep learning
framework (14) for used for implementing this network.



5.2 Experiments and Results
5.2.1 Sex Classification with functional MRI data

Figure 3 shows the loss and accuracy curves obtained on the training and testing sets for sex
classification. Both of the loss curves showed similar trends and the loss decreased as more epochs
pass, as expected. However, the loss curves seemed erratic, and the loss jumped to higher values for
some epochs. These spikes occurred around the same number of epochs for both the training and
testing loss. This could be because of batch gradient descent being used which resulted in an erratic
loss curve since weight updates were done more frequently. The training loss converged to a value
lower than the testing loss, which showed that there might be some overfitting.
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Figure 3: Plots showing the training and testing loss and accuracy curves for sex classification

The accuracy curves, as expected, showed similar trends as well, and the accuracy increased as more
epochs passed. The converged training accuracy was higher than the converged testing accuracy,
which again suggested overfitting. However, the testing accuracy was much higher than 50%, which
showed that there are indeed functional differences in the way male and female brains function. The
network was not guessing randomly and was able to learn these differences to separate male and
female brains.

Figure 5 shows the confusion matrix obtained. Male was the positive label and Female was the
negative label . Based on these labels, the Precision was 0.7563, the Recall was 0.833, and the F1
score was 0.793. The model predicted male and female brains with similar accuracy. The precision
was lower than the recall, which showed that the model had more false positives indicating that it
predicted the sex as male more often.

5.2.2 Age Classification with functional MRI data

Our initial effort was to treat age as an regression task, since biological age is continuous. To
perform the regression, we modified our network to compute a single output value. We used Mean
Square Error (MSE) loss and R? score as the measure of accuracy. But such a regression setting
demonstrated aberrant behavior in which the training loss and accuracy converged with the iteration
while the testing loss increased and accuracy fell (Figure 4). According to the documentation
(15), negative R? score indicates worse regression performance than the mean average model.
Implementing learning rate decay or changing the window size did not change this trend in training
and testing. We speculate that these phenomena were due to the tight age range of the dataset being
indifferentiable. The next step was to loosen the prediction criteria by transforming the fine-grained
regression to a coarser binary classification task.

We discretized the age into a binary age classification problem where we tried to predict whether the
sample was younger than the threshold age of 28. The threshold was set to most evenly bin the data


https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html
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Figure 4: Left: Plots for training and testing accuracy for full age with MSE Loss. Right: Plots for
training and testing accuracy for binary age with CE loss

into the two classes. This led to the expected trend of decrease in loss and increase in accuracy during
both training and testing phase (Figure 4). The convergence in loss occurred at iteration of 60 in both
training and testing dataset. The training loss converged below 0.1 whereas the testing loss converged
at 0.6, which is one of the common marks for overfitting.

The sign of overfitting was also observed during the accuracy analysis (Figure 4). The maximum
training accuracy was 1 which was markedly greater than the maximum testing accuracy of 0.63,
suggesting an overfit in the data. But the prediction value greater than 0.5 indicates that the network
learned the age dependent functional differences in the fMRI dataset.

Since the task is reduced to binary classification, we were able to further evaluate our network through
the confusion matrix (Figure 5). Our network had a precision of 0.6457, a Recall of 0.8692, and the
F1 score of 0.7410 with Young as the positive label. The recall was higher than the precision, which
showed that the model is likely to result in the predict label of Young than Old. The true positives
(113) were greater than the false positives (62) and the true negatives (27) were greater than the false
negatives (17), which represented the success of the model to distinguish the biological age given
fMRI.
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Figure 5: Confusion Matrix for Age and Sex Classification

6 Conclusion/Future Work

In this project, we performed both classification and regression tasks to predict biological age and sex
given the resting state functional MRI dataset. We used a novel model architecture ST-GCN which had
not been previously deployed in this field. The maximum testing accuracy for sex was 78%, and for
binary age was 63%. This indicates that functional MRI is more informative to predict sex than age. A
higher-than-random accuracy also suggests that there are indeed functional differences in the brain for
different ages and genders. For both age and sex prediction, we encountered significant differences
between train and test accuracy. This indicates the susceptibility of our model to overfitting. Given
more time, we would like to reduce overfitting through dropout and weight regularization. We would
also like to see whether subject level prediction instead of sample level prediction (because of data
augmentation) increases the accuracy of the prediction.
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