Photo to Doodle Generator Using a GAN
Project Final Report, CS230 Fall’'19, Generative Modeling
Talbot Morris-Downing, Manu Agarwal
https://github.com/talbotmd/doodle

Introduction

Many papers and projects have applied deep learning to various problems where the input is a
human sketch or doodle. For example retrieving an image based on a human sketch [1],
recognizing/classifying the object drawn in a sketch [3], or taking a sketch and creating a
realistic image from it [5]. However, to our knowledge it seems that very few people, if any,
have focused on applying deep learning to go in the other direction, that is taking an image and
creating a sketch similar to what a human would create. Certainly algorithms exist for creating
drawings from images, but these generally use contours to create much more accurate
sketches than what the average person could do. Our early attempts at applying style transfer
to these images yielded unappealing results that can easily be distinguished from a human
made drawing (below).

CONTENT
IMAGE

Figure 1: Attempts at making human drawn doodles using style transfer or contour drawing. Results were
nonsensical in style transfer when trying to do doodles instead of re-coloration, and results were robotic with machine

generated contour drawing.

Related Work

It has been difficult to find work that exactly matches our project, however we were able to find
some work that attempted similar or related tasks. In Cai and Song’s work [6], they created a
model to output images that resemble pencil drawings from an input image. While their process
creates images that are very visually appealing, they are certainly beyond what the average
human is capable of drawing. Moreover, their process is essentially style transfer, using the
image contours as the content, and a separate hand drawn image for the style, and the model
does not really learn anything about the nature of the original images.

On the opposite side of the spectrum, there is a fairly significant amount of work that starts with
sketches as an input. A 2017 paper by David Ha and Douglas Eck, A Neural Representation of
Sketch Drawings [3], uses recurrent neural networks to take human sketches and reconstruct
them by encoding and decoding the images. Though using an RNN did not make as much

https://github.com/talbotmd/doodle

sense in our case as that work was using the lines drawn as the input and our work used a
single image as the input, the process of encoding the image down to a simpler representation
seemed interesting, it was also used in the image-to-image translation paper [5]. The
image-to-image work attempts to do essentially the same problem that we are working on, but in
the opposite direction. They take human drawn images, or simplified representations of the
desired output, and output realistic images, whereas we input an image, and desire a simplified
representation that appears hand drawn as an output.

We found it interesting that both of these papers employed an encoder/decoder network to
extract some underlying representation of the data, and we ultimately ended up applying this
strategy in our own work as well with fairly positive results.

Dataset

The dataset we are using is the sketchy dataset [2], where researchers have taken sketches
from crowd workers, who are tasked to sketch the object in the photo shown. There are 125
categories of objects, 100 photos per category, and 5+ sketches per photo. Overall we have
more than 75000 photo+sketch pairs to train with.

Figure 2: Example of doodles in the sketchy dataset. Category: airplane, one photo and 5 sketches for photo shown.

Data Augmentation: To increase our dataset, we have augmented our it by applying horizontal
flip to the photos and sketches for this milestone report.

Note also, that these sketches from the sketchy dataset aren’t particularly beautiful, but are
doodled by hand. Due to this, we are not expecting the output of our generator to be pretty, but
to look naturally hand drawn and to be a representative of the input photo.

Approach

Our overall goal is to make a doodle generator (Hp2d) whose output is a) reminiscent of a hand
drawn doodle, and b) represents the input photo. Our approach was to use GANs to
simultaneously train an Hp2d generator and one or two discriminators. The first discriminator
(Dh) was meant to discriminate a human drawn doodle from one drawn by the generator. The
other discriminator (Dm) was meant to check if the doodle matches the picture. Initially we tried
using two discriminators, but later began using only the discriminator that determined whether or
not the image and doodle pair matched. We went through several iterations of network
architectures for these models. We started with a fully connected 8 layer neural network. This
did not yield very promising results, so we quickly moved on to implementing the generator and
discriminators using a series of convolutional layers with leakyRelLU activation functions for
most layers and sigmoid activation functions for the final layers. Early tests seemed promising,
so we iterated on these for the rest of the project, experimentally increasing and decreasing the

complexity of the network trying for better results.

In [3], the authors used an RNN to encode human sketches, and then decoded them to get an
output that resembled the input, and an encoding that captured the essence of the input. We
attempted a similar strategy of passing the images through a series of CNN layers which
reduced the dimensionality of the data, before decoding it into our output. We found that
encoding and decoding in this way caused the network to lose a lot of information about the
system, and lead to outputs that did not really resemble anything. To help with this issue, we
passed the outputs of the encoding layers ahead to the decoding layers with the same
dimensions, similar to the residual layers discussed in class. This can be seen more clearly on
the poster.

P: Input photo Py

D: Human drawn doodle, with photo P as reference Dm »_» 1- Doodle matches photo
d: Generator drawn doodle 0: Otherwise
D_o—

I
P—— —

i "

! Dh s—» 1: Human drawn
Hp2d 0: Otherwise

Figure 3: Our original network model structure, one generator and two discriminators.

D [. ..
p_'k | Genarator U DISCI‘(I’TI;')atOF .. 1: D matches P
' d D 0: Otherwise
(H)

P: Input photo, D: Human doodle (ref: P), d: Generator doodle

Figure 4: Our revised model structure, one generator and one discriminator

Cost Functions: We used the following cost functions for training the generator and the
discriminator (revised model).

1 Mhuman Mgen
Jg, = ——— Z log(Hp(FP;, D;)) — Zlog(l — Hp(F;, Hg(F;)))
Mhuman Mgen 7
1 Mgen
Jig = ———) log(Hp(P;, H(F)))
gen =1

Experimental Results

While the initial results from the fully connected network were perhaps not very encouraging, the
results of the cnn architectures suggested we were moving in the right direction. It did not
closely resemble the input image to any degree, but certainly it was learning to draw lines.

-

.}//é

el
N b
=

Figure 5: Example output from our initial cnn test

For the midterm report, several models were tested with varying results. In the most successful
case, the GANs were trained on 10,000 image/sketch pairs for 150 epochs. Below are some
examples from this test of doodles generated by the generator and performance of the
discriminators on images from the test set.

Human Doodle Generator Output Human Doodle Generator Output
D_h o/p= 0.02 D_h o/p= 0.03 D_h o/p= 0.03 D_h o/p= 0.08
D_m o/p= 0.83 D_m o/p= 0.72 D_m o/p= 0.91 D_m o/p= 0.82

T

VANV

Figure 6: Examples of images from the generator..

Following the midterm report, the improvements and changes that we have made have mostly
revolved around trying to improve our convolutional model. We removed the discriminator that
was trying to determine if the output was human or computer generated, with the hope that this
task could really be performed by the same discriminator that was comparing the input and
output images to see if they matched (figure 4).

Human Doodle Generator Output
Human Doodle Generator Output

@gﬁ
=i

__H

Figure 7: Examples input image, human sketch, and generator output

0.875 1 1381

0.850 1 1.36

0.825 134

0.800

0.775 4

0.750 A

0.725 1

6 1‘0 2 IEl 3‘[) 4‘0 5‘0 éD 7ID Bb 6 1‘0 ZID 3‘0 4‘0 SID BID 7ID BID
Epochs Epochs

Figure 8: Generator loss (left), Discriminator loss (right), over 80 epochs

In figure 8, the loss for the discriminator can be seen quickly decreasing, which matches a sharp
rise in the cost of the generator, followed by the generator adapting and learning to produce
outputs that the discriminator has more difficulty distinguishing from human drawings. It seems
that the generator is mostly focussing on the contours of the image, rather than learning any
kind of understanding of what it is drawing. Given how poorly the input images and sketches
match up, it is actually very impressive that the model learned to perform this well. If we had
included more information about what object each image contained in the training, it is possible
the model could have come up with a simpler representation for the object type.

Future Work

At this point, as mentioned before, the generator still seems to be mainly identifying the
contours of the image, and using those to create its output. While this often produces
identifiable results, in order to get better performance out of the generator and discriminators on
training set, and also to help it generalize, we would suggest a few changes. The network still
has difficulty distinguishing between the foreground and background of an image, so using
software to artificially extract the foreground before computing the doodle would make it much
easier to draw. Additionally, as it seems that the model has really just learned how to draw
contours, it would probably benefit significantly from having more information about the objects
in the scene it is supposed to be drawing. Using YOLO or some other object recognition
software to precompute what should be drawn and where it is in the scene would allow the
model to be less general, and have a better understanding of what it is drawing.

Contributions

Manu came up with the model structure, a generator trying to fool two discriminators, cost
functions, and built the first fully connected neural network implementation, as well as an
encoding based triplet loss implementation that we did not have enough time to fully test.
Talbot worked mainly on creating and iterating on the CNN architecture, and setting up/training

on AWS.

References

1.

Patsorn Sangkloy, Nathan Burnell, Cusuh Ham, and James Hays. 2016. The sketchy
database: learning to retrieve badly drawn bunnies. ACM Trans. Graph. 35, 4, Article
119 (July 2016), 12 pages. DOI:
https://doi-org.stanford.idm.oclc.org/10.1145/2897824.2925954

Patsorn Sangkloy, Nathan Burnell, Cusuh Ham, and James Hays. 2016. Sketchy
Database. http://sketchy.eye.gatech.edu/

David Ha, Douglas Eck. 2017. A Neural Representation of Sketch Drawings.
https://arxiv.org/abs/1704.03477

David Ha, Douglas Eck. 2017. QuickDraw Dataset.
https://github.com/googlecreativelab/quickdraw-dataset

Isola, Phillip and Zhu, Jun-Yan and Zhou, Tinghui and Efros, Alexei A. 2016.
Image-to-Image Translation with Conditional Adversarial Network.
https://arxiv.org/abs/1611.07004

Xiuxia Cai, Bin Song. Image Based Pencil Drawings Synthesized Using Convolutional
Neural Network Feature Maps.
https://link.springer.com/article/10.1007%2Fs00138-018-0906-2

https://doi-org.stanford.idm.oclc.org/10.1145/2897824.2925954
http://sketchy.eye.gatech.edu/
https://arxiv.org/abs/1704.03477
https://github.com/googlecreativelab/quickdraw-dataset
https://arxiv.org/abs/1611.07004
https://link.springer.com/article/10.1007%2Fs00138-018-0906-2

