
YouTube-8M Video Understanding

Kun Huang
Department of Computer Science

Stanford University
khuang47@stanford.edu

Abstract

Video understanding is an important branch of computer vision. In this project, I
apply NetVLAD, learnable gate and Mixture-of-Experts to large scale video-level
classification using the most recently published Youtube-8M dataset. On top of
that, I use transfer learning for temporal localization with Youtube-8M segments
dataset. The model achieves a global average precision (gAP) of 85% for the
video-level classification and a mean average precision (mAP) of 82% for the
temporal localization.

1 Introduction

In most web searches, video retrieval and ranking is performed by matching query terms to metadata
and other video-level signals. However, videos can contain an array of topics that aren’t always
characterized by the uploader, and many of these miss localizations to brief but important moments
within the video. Being able to assign video-level labels and localize actions and moments within
videos can enable applications such as improved video search (including search within video), video
summarization and highlight extraction, action moment detection, improved video content safety, etc.

For the video level classification of this project, the input to the networks is pre-extracted audio-video
features of individual frames of the Youtube 8M videos. I use multilayer neural networks that include
NetVLAD layer, gating layer, Mixture-of-Experts [10] (MoE) layer.

For the segments detection, the input has human-verified segment labels, and it comes with time-
localized frame-level features so classifier predictions can be made at segment-level granularity. I
use transfer learning based on the video-level model, then fine-tune the model to create a segment
classifier.

2 Related work

Youtube-8m is the largest multi-label video classification dataset, each video is decoded at one-frame-
per-second, and used a Deep CNN pre-trained on ImageNet to extract the hidden representation
immediately prior to the classification layer [1], which makes the frame features lightweight for
download.

For video level classification, I first tried Spatial-Temporal CNN model, with a 3-layer spatial CNN
performing 1D convolution over the 1024 single-frame visual features, and a second, 3-layer temporal
CNN performing 1D convolution over the frames of each video, with filters of depth 1024 [2]. It
achieves 68% gAP in my experiment. LSTM [3] and GRU are also commonly used for solving video
recognition problems. The two-stream Bi-directional LSTM model achieves a gAP of 82% [4]. At
a high level, either the spatial-Temporal CNN model or the RNN model does not fully exploit the

CS230: Deep Learning, Fall 2019, Stanford University, CA.



visual and audio features, although they’ve worked on temporal features, most of the signal extracted
from the video still relies on the static features as shown in my experiment.

Besides CNN and RNN, Vector of Locally Aggregated Descriptors (VLAD), which aggregates local
descriptors into a compact image representation, is widely applied in image classification [5]. On top
of that, NetVLAD [6] integrates VLAD with supervised learning. With NetVLAD pooling the visual
and audio features of Youtube 8M dataset, I’m able to achieve 85% gAP from the dataset.

Temporal Action Localization Network (TAL-Net) [7] is a new approach for action localization in
video based on Faster R-CNN, which is first proposed to address object detection [8], where given an
input image, the goal is to output a set of detection bounding boxes, each tagged with an object class
label. At segment level, I finally choose to adopt transfer learning to tackle the temporal localization
task, by using the video classification model as a base model, and fine-tuning the video level model on
Youtube 8M segment dataset to create a segment classifier, which can be used for segments detection.

3 Dataset and Features

The original YouTube-8M dataset consists of millions of YouTube video IDs, with high-quality
machine-generated annotations from a diverse vocabulary of 3,800+ visual entities. It comes with
precomputed audio-visual features from billions of frames and audio segments. On average, each
video has 3.0 labels. The videos are split into 3 partitions, Train : Validate : Test, with ratios 70%,
20% and 10% [1].

Videos are pre-processed to extract state-of-the-art 1.3 Billion visual and 1.3 Billion audio features.
The visual features were extracted using Inception-V3 image annotation model, trained on ImageNet.
The audio features were extracted using a VGG-inspired acoustic model on a preliminary version of
YouTube-8M. Both the visual and audio features were PCA-ed and quantized to be as lightweight as
possible [1].

Google recently released YouTube-8M Segments Dataset, which is an extension of the original
YouTube-8M dataset, which includes human verified labels at the 5-second segment level on a subset
of YouTube-8M videos, totalling 237k segments covering 1000 categories.

4 Network Architecture

4.1 Video-level classification

The video-level classifier consists of a NetVLAD layer , a fully connected layer, a gating layer and a
final Mixture-of-Expert (MoE) classification layer. The network has a similar architecture with the
one described in Learnable pooling with Context Gating for video classification [9].

Figure 1: Video-level model. NetVLAD layer for features aggregation, MoE for the final classification.

4.1.1 Feature aggregation with NetVLAD

In computer vision, Vector of Locally Aggregated Descriptors (VLAD), which aggregates local
descriptors into a compact image representation, is widely applied in image classification. The
essential idea of VLAD is to accumulate, for each cluster center ck, the difference of the vectors Xi

2



assigned to ck. In other words, compute the distribution of data with regards to the class centers.

V (i, k) =

N∑
n=1

ak(Xi)(xi(j)− ck(j))

The cluster centers ck are predefined for VLAD, as ak denotes if feature Xi belongs to the center
k. For supervised learning, it’s possible to learn the cluster centers ck. And instead of using hard-
assignment ak, we can use softmax function for a soft-assignment [6]. NetVLAD is described
as:

V (i, k) =

N∑
n=1

ew
T
k Xi+bk∑
eWk,+bk,

(xi(j)− ck(j))

wk, bk and ck are learnable parameters. Figure 1 demonstrates the logic flow and implementations of
NetVLAD [6] for visual data of a single frame, while audio data follows a similar path.

Figure 2: Raw visual/rgb features pass through a CNN architecture, and the extracted features are aggregated in
NetVLAD layer.

4.1.2 Gating Layer

The gating layer transforms the input feature representation X into a new representation Y:

Y = σ(W ∗X + b) ∗X

where X is the input feature vector and σ is the element-wise sigmoid activation. W and b are trainable
parameters. Similar to the gates in LSTM and GRU, the gating layer is to let the neural network itself
learn the relevance of each input feature, and upweight relevant activations and suppress irrelevant
activations.

4.1.3 Mixture of Expert

The idea of Mixture of Experts (MoE) is to train a number of neural nets, each of which specializes
each part of the data [10]. A manager neural net will look into the input data and decide which
specialist to give it to.

p(ck) =

E∑
j=1

p(ck|ej)p(ej)

MoE doesn’t make very efficient use of data because the data is fractionated over all these different
experts, so with small dataset it can’t be expected to do very well. But it can make very good use
of extremely large datasets. Figure 3 shows the implementation of MoE, the manager comes with a
softmax layer to pick the experts. The experts are non-mutually exclusive multilabel classifiers.

Figure 3: MoE: experts specifies in different regimes, manager determines the relevance of experts.

3



4.2 Temporal Localization

The segment localization model makes use of the video-level model, and it comes with two types
of segment classifiers: a context-ignore classifier, which is just video-level model fine-tuned on the
segment dataset, and a context-aware classifier. The final prediction is the average of the two.

4.2.1 Context-aware model

Context-aware model consists of three parts: a video embedding generator, a segment embedding
generator and a fully connected classifier which is a fully connected layer with a Relu activation
followed by a final MoE layer. A video embedding is created by removing the last layer (MoE
layer) of a video-level model and feeding it with an entire video. A segment embedding is created
by following the same strategy but fed with a segment. The embeddings are concatenated and are
passed to the fully connected layer and the MoE layer. During training, the parameters of the video
embedding generator, which is the context of the segment, will keep frozen in order to preserve
the context features learned from the video level model. While the learning rate of the segment
embedding generator is set to be half the learning rate of fully connected classifier.

Figure 4: Temporal localization architecture.

5 Experiments

Models are built using Tensorflow [11]. Pandas [12] is used to ingest the dataset vocabulary. For
video-level model, the learning rate of 0.0002 with the learning rate decay of 0.8 every 1000000 steps
gives the best performance. The batch size for training is 128 which gives a reasonable training speed
and converge speed. For each batch, batch normalization is applied during training. Adam optimizer
with L2 regularization is used during training.

The experiments with gradient clip gives similar results. Parts of the reason could be that the ground
truth is skewed, that only several individual classes out of the total 1000 classes are labeled as 1 for
each video, so after the model learned how to distinguish negative labels, which is relatively easy for
the classifier compared with recognizing positive labels, the cost mainly comes from positive labels
which is small.

Moreover, Loss is calculated using cross entropy loss function: α * ŷ * log(y) + (1-ŷ) * log(1-y).
Attempts were made to amplify the loss of the positive labels, that is, making α greater than 1. But
no performance improvements are observed this way, due to the fact that the model learned very well
on classifying negative labels, which makes the second part of the formula close to zero.

To speed up the training process, only videos labeled with the 1000 categories from the segment
dataset were used in training. For segments, in addition to the 5 human-labeled frames, the previous
and later 3 frames are also included to the training example. The feature data is normalized using l2
norm. Again, due to the fact that the labels are skewed towards negative labels, I can’t use precision
or accuracy as metrics. Instead, I adopt global average precision (gAP) for video-level prediction, and
Mean average precision (mAP) for segment-level prediction where relevant segments are predicted
for each class.

4



(a) loss (b) gAP

Figure 5: Training process of the video-level classification

(a) loss (b) gAP

Figure 6: Evaluation process of the video-level classification

(a) loss (b) mAP

Figure 7: Training process of the segment-level detection

(a) loss (b) mAP

Figure 8: Evaluation process of the segment-level detection

6 Conclusion

With YouTube-8M dataset, I created a video-level classifier with NetVLAD layer, a fully connected
layer with gating, and a Mixture-of-Experts layer for the final classification, which achieves gAP of
85% . The context-aware model and the context-ignore model combined is able to achieve mAP of
82% for the temporal localization task.

The algorithm is focused on static features, but it might be a good idea to also incorporate temporal
features. Future experiments can include both the NetVLAD-associated model and a recurrent model
(such as LSTM and GRU), and let the neural network to figure out the relevance of each model.

A caveat of my project is that the models are too large. The video-level model is 3.72G and the
segment-level model is 10G, making it impractical to load the models to phones and other devices.
It’s important to have compact models that meet memory and computational requirements, and this is
true even if working in cloud computational environments.

5



References

[1] Abu-El-Haija, Sami, et al. "Youtube-8m: A large-scale video classification benchmark." arXiv preprint
arXiv:1609.08675 (2016).

[2] Gauthier, Alexandre, and Haiyu Lu. "YouTube-8M Video Classification." (2017).

[3] Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural computation 9.8 (1997):
1735-1780.

[4] Li, Fu, et al. "Temporal modeling approaches for large-scale youtube-8m video understanding." arXiv
preprint arXiv:1707.04555 (2017).

[5] Jegou, Herve, et al. "Aggregating local image descriptors into compact codes." IEEE transactions on pattern
analysis and machine intelligence 34.9 (2011): 1704-1716.

[6] Arandjelovic, Relja, et al. "NetVLAD: CNN architecture for weakly supervised place recognition." Proceed-
ings of the IEEE conference on computer vision and pattern recognition. 2016.

[7] Chao, Yu-Wei, et al. "Rethinking the faster r-cnn architecture for temporal action localization." Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.

[8] Ren, Shaoqing, et al. "Faster r-cnn: Towards real-time object detection with region proposal networks."
Advances in neural information processing systems. 2015.

[9] Miech, Antoine, Ivan Laptev, and Josef Sivic. "Learnable pooling with context gating for video classification."
arXiv preprint arXiv:1706.06905 (2017).

[10] West, David. "Neural network credit scoring models." Computers & Operations Research 27.11-12 (2000):
1131-1152.

[11] Abadi, Martín, et al. "Tensorflow: A system for large-scale machine learning." 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16). 2016.

[12] McKinney, Wes. "pandas: a foundational Python library for data analysis and statistics." Python for High
Performance and Scientific Computing 14 (2011).

6


	Introduction
	Related work
	Dataset and Features
	Network Architecture
	Video-level classification
	Feature aggregation with NetVLAD
	Gating Layer
	Mixture of Expert

	Temporal Localization
	Context-aware model


	Experiments
	Conclusion

