CS230

CNNis for Bulk Material Defect Detection

Akshay Aravindan Harrison Greenwood
akshayl4@stanford.edu hgreenw2@stanford.edu

Aakriti Varshney
aakritiv@stanford.edu

Department of Mechanical Engineering
Stanford University

Abstract

Detecting defects in bulk materials is one of the challenging problems for industries
worldwide and is currently very manual and time consuming. This project is aimed
at developing a model that can perform surface defect detection in bulk materials,
particularly steel and plastic. Through this study, defects in steel were detected
by applying transfer learning to 12568 steel images using a pretrained ResNet18
and ResNet50 Convolutional Neural Network (CNN) and it was hypothesized that
these networks would perform well on a small dataset of similar plastic images.
After making suitable changes to the models, a test accuracy of 87% was obtained
with the ResNet18 model while an accuracy of 90.2% was obtained using the
ResNet50 model on the steel dataset. However, while applying both these models
on the plastic dataset, we only obtained a 60% accuracy, indicating that our initial
hypothesis was not accurate.

1 Introduction

We propose to investigate the problem of predicting defects in steel. As a team of mechanical
engineering students, we’re familiar with the importance of quality assurance for bulk materials;
shipping steel can be extremely expensive (both in time and cost), and if the steel performs differently
than expected, the purchaser takes on large risks; steel that underperforms can damage existing parts in
the project and/or equipment used to work it. Manufacturers must also meet federal regulations when
supplying steel. Steel suppliers are therefore under high pressure to ensure their quality assurance is
both robust and inexpensive.

Figure 1: Sample image with defects in Steel

From Figure[3] we see a sample image from the training dataset that has defects. (As isolated by the
red box) while figure 1.2 shows a defect free steel plate.

CS230: Deep Learning, Fall 2019, Stanford University, CA. (LateX template borrowed from NIPS 2017.)



Figure 2: Sample image with no defects in Steel

Detecting defects in steel plates can be expensive, time consuming, and prone to error, especially with
the scale of a steel mill. Generally, human operators must manually inspect the product, possibly with
the aid of specialized equipment. A mechanized approach could be more efficient. Currently in large
scale manufacturing, it is increasingly expensive to ensure this level of quality assurance manually.
By automating this process, we foresee potential savings for all such manufacturing industries.

However, this issue is not isolated to steel plates alone. There are several such engineering materials
that can benefit from defect detection. We would first use transfer learning on a pre-existing image
classification network such as ResNet18 and ResNet50, to create a binary classification model that is
able to detect steel defects. This model can, in turn, be applied to other engineering materials like
aluminum, brass, bronze etc. to be able to detect defects with no change in network architecture.
Thus, in our project we hypothesize that by using a ResNet model that is pre-trained with high
accuracies on steel defects we will be able to use this model as is, on other bulk materials like plastic
and detect defects with similar accuracies.

2 Related work

Steel defect detection alone has been done under a variety of contexts. Of course, the traditional
method was manual, human inspection, but in recent years deep learning algorithms have proven
successful. One paper described steel rail defect detection on a train. Another detected casting defects
using X-ray imaging. Since these papers were written with very specific tasks in mind, they weren’t
applied to an array of materials. And while work has been done to create generalized defect detectors
capable of finding inconsistencies in images with varying backgrounds, there hasn’t been significant
success in creating a network capable of distinguishing bulk material defects across multiple real
engineering materials.

3 Dataset and Features

The dataset provided in the kaggle competition (https://www.kaggle.com/c/
severstal-steel-defect-detection/data) contained about 12,568 grayscale images
of steel surfaces with and without defects. This dataset was originally intended for segmentation,
but for the sake of scope for this project, we converted the encoded pixel annotations into binary
classification (1 for defect, O for defect-free). Training was done on this steel image dataset, so
it was split 80-10-10 into train, val, and test. The second engineering material considered was
plastic. A set of ~500 grayscale microscope images of defective plastic were obtained from
kolektor(https://www.vicos.si/Downloads/KolektorSDD).

The steel dataset images were resized from 1600 by 256 pixels to 512 by 512 with padded black
pixels. Similarly, plastic images were resized from 500 by 1266 to 512 by 512 for compatibility with
the model used. To human eyes, the resulting resolution was more than adequate for identifying
defects, however, there were confusing aspects to the steel dataset. What might be called a defect by
one viewer wasn’t necessarily considered a defect by Severstal.

4 Methods

To build a model capable of distinguishing generic defects in a variety of materials with a relatively
small training set, we opted to use transfer learning of an existing model. Models considered were
pretrained ResNet18, ResNet50, and ResNet101 built into pytorch. Only the last layer of the ResNet
was removed and replaced with a new final, fully-connected layer for binary classification. The


https://www.kaggle.com/c/severstal-steel-defect-detection/data
https://www.kaggle.com/c/severstal-steel-defect-detection/data
https://www.vicos.si/Downloads/KolektorSDD

Figure 3: Plastic image with a defect lower-center

number of frozen layers was the only hyper-parameter of transfer learning that was tuned. Binary
cross-entropy was used for the loss function.

L(y,9) = —(9log(y) + (1 — §)log(1 — y))

Adam was used for the optimizer. Accuracy was used as the metric of evaluation of the model.
Additionally, learning rate and regularization parameter were also tuned to improve convergence and
solving the variance problem respectively.

5 Discussion

Initially a ResNet18 model was used with only the last 5 layers unfrozen. Running this model to
convergence yielded only around 70% training accuracy- insufficient for a binary classifier. To combat
the issue of high bias, we unfroze more parameters. Training the last 16 layers of the ResNet-18
performed well and yielded an accuracy of around 97% on the train set, 90% on the val set, and 87%
on the test set.

1000

=
o
=

0975

=
=
b

0950

==
= B =
B 2 B8
A 2 &
= 2 o
e B - -]
L= = =

=]
o
o

Training accuracy
Walidation accuracy

03850

=
@
=

=
n
=

0800
T T T T T T T 0501~ T T T T T T
0 5 10 15 20 5 0 0 5 10 5 20 5 0
No. of Epechs No. of Epechs
(a) Training accuracy (b) Validation accuracy

Figure 4: Training and validation accuracies on ResNet18 with the last 5 layers unfrozen

The high-level feature-detectors produced by the deep layers of the pretrained model were not useful
for identifying defects. Unfreezing more layers prior to training greatly reduced the bias issue.

To further improve our performance, we decided to experiment with a deeper ResNet. The last 50
layers of ResNet101 were unfrozen and trained. Once again, the bias problem led to a poor accuracy
of only 74%. Unfreezing the last 98 layers of the model resulted in an accuracy of 94.7% on the



train set and around 90% on the dev set. This brought up the issue of diminishing returns. Greatly
increasing the depth of the network only marginally increased the accuracy of the model.

To strike a balance, a ResNet50 model was used with the last 48 layers unfrozen. This was a good
compromise between computational cost and increased accuracy and a train accuracy of 99% , 92%
on the dev set and 90.2% on the test set was obtained.

100
0904

=
=
n
=
=
o

=

=

=
=
o0
=

Training accuracy

=

=

o
=
jary
o

Validation accuracy

0.80 0704

0 5 It 5 B 5 kY 0 5 10 5 2 5 EN
No. of Epechs No. of Epechs

(a) Training accuracy (b) Validation accuracy

Figure 5: Training and validation accuracies on ResNet50 with the last 48 layers unfrozen

One of the other important considerations here, is the hypothesis of a high bayes error on the steel
defect dataset. It was difficult to predict if some of the images in the dataset actually had defects
despite the experience of being mechanical engineers. This could potentially be a reason for the
saturation of model accuracy. Additionally, since the initial dataset was for a segmentation problem
given by Severstal, the defects were annotated better in the dataset using encoded pixels which could
allow the model to understand better what defects looked like in the dataset.

(a) Non-defective steel (b) Defective steel

Figure 6: Examples of non-defective and defective steel images from the dataset demonstrating a
high human error

One of the other issues with the model performance was the high variance problem causing validation
accuracies to be lower than training accuracies. In order to address this, the regularization parameter
was increased from le-5 to le-3 to improve regularization and hence reduce variance. But unfortu-
nately, even after this hyperparameter tuning, the validation accuracy was still found to only be 86%
when the training accuracy was 96%.

With a well trained, high accuracy-yielding ResNet on steel defects, the actual problem at hand could
be tackled - evaluating this trained model’s performance as a bulk material defect detector. As a
starting point, the pretrained model was tested on the plastic dataset and an accuracy of 60.2% was
obtained. The initial hypothesis that training a model on one material would result in high accuracy
defect detection on all bulk materials was thus invalidated based on this model’s performance.
However, the reason for the low accuracy could be conceptual or attributed to this particular ResNet
model. Further investigation would need to be done.



0950

0925

0900

0875

0850

Training accuracy
Validation accuracy
=)

o
=

0.825
0.800 055
0.775 0.50
0 5 0 15 i 5 £ 0 5 0 15 n % E

No. of Epechs No. of Epochs

(a) Training accuracy (b) Validation accuracy

Figure 7: Training and validation accuracies on ResNet50 with the last 48 layers unfrozen with a
higher value (1e-3) of the regularization parameter

6 Conclusion and Future Work

In conclusion, transfer learning was performed using a pretrained ResNet CNN on a dataset of steel
defect dataset. Hyperparameters were tuned to obtain high accuracies for binary classification of steel
defects. This was then applied as is to plastic defects dataset to observe performance.

Model (on Steel) Test Accuracy
ResNet18 (Last 5 layers unfrozen) 70.2%
ResNet18 (Last 16 layers unfrozen) 87.0%
ResNet101 (Last 50 layers unfrozen) 70.5%
ResNet101 (Last 98 layers unfrozen) 90.6%
ResNet50 (Last 48 layers unfrozen) 90.2%

The table above shows a summary of the results obtained on the steel dataset with different networks
and hyperparameters.

Based on the results obtained, the first step would be to perform an error analysis on the classification
and understand better where the misclassification is occurring and if there are common trends for the
misclassification that validates our theory of the Bayes error being high.

Additionally, understanding why our model did not perform well on the plastic dataset would be
of importance. It would be imperative to understand if this was a characteristic of our model or if
conceptually our hypothesis has no basis. Extending our hypothesis to other bulk materials other than
plastic would also help to analyze the model performance on overall bulk materials.

7 Contributions

All members of the team contributed equally. Harrison Greenwood found datasets, performed all data
preprocessing, constructed the dataloader, and helped train the model. Akshay Aravindan and Aakriti
Varshney focused on choosing the right model, modifying its layers for transfer learning and applying
the model to the loaded data. They also worked on tuning some hyperparameters to improve model
performance.

References

[1] Ferguson, Max, et al. "Automatic localization of casting defects with convolutional neural networks." 2017
IEEE International Conference on Big Data (Big Data). IEEE, 2017.



[2] Wang, Tian, et al. "A fast and robust convolutional neural network-based defect detection model in product
quality control." The International Journal of Advanced Manufacturing Technology 94.9-12 (2018): 3465-3471.

[3] Shang, Lidan, et al. "Detection of rail surface defects based on CNN image recognition and classification."
2018 20th International Conference on Advanced Communication Technology (ICACT). IEEE, 2018.

Code

The code used for this project can be found here: https://github. com/hgreenw2/CS230. It has been written
using the Pytorch framework.


https://github.com/hgreenw2/CS230

	Introduction
	Related work
	Dataset and Features
	 Methods 
	Discussion
	Conclusion and Future Work
	Contributions

