
Pet Cat Face Verification and Identification

Adam Klein
CS230 Fall 2019

Stanford University
adamdk@stanford.edu

Abstract

We investigate using deep convolutional neural networks to detect, verify and
identify individual domestic cat faces in digital images. We describe a moderately
sized data set of cat images sourced from internet pet adoption profiles. We report
on training YOLOv3 to detect cat faces and EfficientNet with regularized triplet
loss to generate 64-dimensional embeddings for verification and identification. We
obtain state-of-the-art accuracy of around 95% on the verification task and a less
impressive but still strong 81% on the rank-5 identification task using an open-set
protocol with cats not seen during training. In contrast to prior approaches, face
landmark tagging and pose alignment are not used.

1 Introduction

Deep learning approaches have yielded impressive achievements in human face recognition and
verification [1]. There has been far less research into applying deep learning to individual animal
recognition. Existing literature on household pet identification primarily concerns individual dog
identification [2], [3].

There are approximately 76.8 million dogs and 58.4 million cats living as companion animals in
households in the United States alone [4]. Many of these pets are microchipped by their owners so
that the pets may be identified in case they run away. This procedure costs around forty-five US
dollars, which includes registration in a database [5]. In contrast, a digital image-based pet registry
would be less costly and more convenient to operate, thereby lowering the barrier to registering a pet.

Our work offers the following contributions. We describe a novel data set of over 130,000 individual
images of over 23,500 distinct cats sourced from online pet adoption profiles. We report on training
YOLOv3 [6] to detect and extract cat faces from source images, forgoing manual feature selection
and image alignment, in contrast to prior approaches which preprocess images to align facial features
and pose. Finally, we report on training EfficientNet [7] for verification and recognition tasks, using a
regularized triplet loss function and hard triplets that are mined in an online fashion.

2 Related Work

Meugot et al [3] recently reported that a ResNet-like network architecture trained using the triplet loss
from FaceNet [8] was able to verify dog faces with an accuracy of 92% and identify dogs with 74%
rank-1 and 96% rank-5 accuracy on open-set data. The authors used a small data set of 3148 images
of 485 dogs of which 298 images of 48 dogs were held out for testing. The authors hand-labeled
the eyes and muzzle within each dog image in order to programmatically align faces during image
preprocessing. As of December 2019, the authors have grown their data set to 8600 images, but have
seen their verification accuracy decrease to 86% on account of having more animals of the same
breed in the data [9]. It stands to reason the identification accuracy is likely also lower.

Lin and Kuo [10] focus on individual cat identification, and train a CNN to perform cat facial feature
detection (eyes, nose, forehead, mouth), but then rely on traditional machine learning techniques
(PCA and SVMs) to perform identification. They also use a small data set of 1500 images of 150

CS230: Deep Learning, Fall 2019 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)



cats. It is not clear from the paper whether their reported identification accuracy of 94.1% excludes
individuals or images seen during training.

3 Data Set

We sourced images from petfinder.com [11] by using their developer API to crawl cat adoption listings
within a 500-mile radius of seven major US Cities: New York, Chicago, Miami, Los Angeles, Dallas,
St. Louis, and San Francisco. We scanned approximately 570,000 distinct cat profiles. Of these, we
selected the approximately 24,000 profiles that had at least five profile pictures. (Each profile had at
most six images.) We downloaded the original-size images for these cats. We then used an MD5 hash
of each image file to discard duplicates, eliminating redundant profiles or pictures. We were left with
around 23,657 distinct cats with at least five pictures. (We say "around" and "approximately" because
we cannot be sure there are no duplicate profiles or images that evade our heuristic checks.) Images
are highly varied in quality and information content as can be seen in Figure 1. Profile pictures are
known to include multiple cats, odd poses, an incorrect cat, and occluded or poorly captured subjects.

Figure 1: Quality problems, from left to right: (1) profiled cat’s face is hidden; (2) profiled cat is not
pictured; (3) profiled cat is second from top; (4) profiled cat is not showing face.

4 Face Detection

To detect and extract cat faces, we initially tried two pre-trained cat-face detectors: one utilizing a
Haar Cascade classifier [12], and one a FHOG-based SVM approach [13]. Simple inspection revealed
both detectors suffered from a significant false negative detection (high miss) rate on our data.

We found success in using transfer learning to train an implementation of YOLOv3 [6] for the task.
We selected 660 images at random and used VoTT [14] to draw bounding boxes around cat faces as
in [15]. We used 594 images for training and the rest for validation. We initialized the network with
the official Darknet weights pre-trained on COCO [16]. We first trained the final three layers for a
single class detection task for 50 epochs using an Adam optimizer with learning rate 10−3, and then
unfroze all layers and trained for another 50 epochs with learning rate 10−4, using a learning rate
reduction factor of 0.1 on validation loss plateau with patience of 3. The trained model demonstrates
100% mAP on on the validation set with a 49% confidence threshold [17]. As can be seen in Figure 2,
the model is empirically adept at detecting cat faces across arbitrary poses, although lower confidence
levels show some puzzling false positives.

Figure 2: YOLOv3 Cat Face Detection. Note false positive in far right picture: remote control identified as
cat with 25% confidence.

5 Data Preparation

We ran our face detector with a 49% confidence threshold over the original images, skipping those
that have either zero or multiple hits (the latter will yield invalid faces unless the input image is a
collage of a single cat). Cats having less than five images remaining were then excluded from the

2



data. We resized each image to max(height, width) = 256 in 3 color channels using a Lanczos
filter, maintaining the aspect ratio, and padding the border with black pixels if necessary. These
images were then partitioned into 86867 training images of 15949 cats, 4803 validation images of 886
cats, and 4794 test images of 887 cats. The data include both easier and more challenging material
(Figures 3 and 4 respectively show this for the validation data). There is also at least one image of a
dog face and one of a human face in the validation data.

Figure 3: Example images for cat 12

Figure 4: From left to right: first six cats are 8203; seventh is 16107; eighth is 16134

6 Methodology

For the verification and identification tasks, we began by attempting to train from scratch the ResNet-
like CNN architecture in Meugot et. al [3], and then moved on to a transfer learning approach using
Inception-ResNet-V2 [18] and finally to EfficientNetB2 [19], the last two of which were pre-trained
on ImageNet [20]. We connect the final global average pooling layer to a fully-connected layer with
64 outputs with identity activation which are then L2-normalized. This outputs a 64-dimensional
embedding given an 256x256x3 input image. We utilize a triplet loss objective function [8] with a
“global orthogonal regularization" term per Zhang et al [21]:

`final = `triplet + α`gor

`triplet = max
(
0, ε−

∥∥∥f(xi)− f(x−
i )
∥∥∥2
2
+
∥∥∥f(xi)− f(x+

i )
∥∥∥2
2

)
`gor =M2

1 + max(0,M2 −
1

d
)

M1 =
1

N

N∑
i=1

f(xi)
T f(xi

−)

M2 =
1

N

N∑
i=1

(
f(xi)

T f(xi
−)
)2

The regularization term penalizes embeddings of randomly sampled non-matching pairs when
they are far away from orthogonal, leading to more spread out feature descriptors. Without this term,
during training, embeddings quickly collapsed to a single vector, setting the loss to be equal to the
margin ε. We chose the values of the hyper-parameters ε, α and d to be 0.4, 1.1 and 64 respectively.
Other values tried were α ∈ {0.9, 1.0} and ε ∈ {0.1, 0.2, 0.3}

We trained the EfficientNetB2 network for 150 epochs in five stages. A single epoch consists
of iterating over all classes (unique cats) in the training set, which are shuffled prior to training.
Each iteration consists of randomly generating (anchor xi, positive x+

i , negative x−
i ) triplets from

batchsize/4 classes in an online fashion. The first stage is training only the final fully-connected layer
for 10 epochs with a batch size of 768 triplets. The second stage is training layers from the final block
(block seven) for 30 epochs with a batch size 612. The third, from block six for 30 epochs with batch
size 384. The fourth consists of training all layers for 35 epochs with batch size 48. And fifth, for
45 epochs with batches sampled from classes clustered every five epochs according to the euclidean
distances of the class centers, forcing the batches to contain similar classes [22]. The “batch hard"
online triplet mining strategy as proposed in Hermans et al [23] is used; the implementation was

3



provided by Moindrot [24]. We used an Adam optimizer with default parameters and learning rate of
10−3 for the first 70 epochs, followed by an exponentially decaying learning rate to 10−7 over the
next 80 epochs. Note the sharp drop in accuracy at epoch 105 corresponding to switching to clustered
class training.

Figure 5: Training EfficientNetB2

7 Cat Face Verification

10,000 pairs of validation cat face images were generated with equal likelihood to be either same or
different cats, as in Figure 6a. An optimal L2

2 distance threshold of 0.455 was chosen to differentiate
cats according to their embedding vectors, leading to a validation accuracy of 95% (Figure 6b). We
plot the ROC curve in Figure 6c.

(a) Example cat pairs (b) Embedding distance threshold vs accuracy (c) ROC Curve

We then used 10,000 pairs of cats generated in the same way from the test data to perform the
verification task. The resulting confusion matrix (Figure 7) reveals an accuracy of around 94.6%
on data containing no previously observed cat classes. This number is conservative; Appendix A
contains examples of both false positive and negative mistakes on the test data, which by inspection
can be seen to include “mistakes" where the network is actually correct and the “ground truth" is
mislabeled.

Same Different
Accept 47.31% 2.46%
Reject 2.93% 47.30%

Figure 7: Confusion matrix with false positive (Different/Accept) and false negative (Same/Reject) error
rates

4



8 Cat Face Identification

In the identification task, we use some test data to establish a database of cat identities and then try to
associate the remaining test data with the correct classes. We follow the methodology in Meugot et al
[3]: in each trial, we randomly split each cat class c containing Nc embeddings into M embeddings
to be used in the database, and Nc −M to be used for lookup using k nearest neighbors search (for
rank-k identification). We ran 500 trials and report the mean, min, and max accuracy in Figure 8a.
We report results for M = 1 and k = 1 which represents a one-shot recognition task; and then results
for k =M + 1 for M = 2, 3, 4. We also graph the effect of k on accuracy for M = 4 with k ≥ 5 in
Figure 8b. We consider these numbers quite strong given the known quality problems in the data set.

Identification Accuracy
M k Mean Min Max
1 1 47.45% 45.18% 49.42%
2 3 70.78% 68.97% 72.52%
3 4 77.19% 75.15% 79.28%
4 5 81.32% 78.89% 83.95%

(a) 500 trials of rank-k identification using M embeddings per class (b) Effect of k on accuracy

9 Interpretability

We see which areas of the test images draw the attention of the network using class activate maps. We
list several examples in Appendix C in which the network appears to pay particular attention to the
forehead and eye areas of the cat face images. Interestingly, the ears only seem to play a particular
role in one of the ten example images reviewed.

Additionally, k-means clustering over the cat face embeddings of the test data is used to determine
which images the network considers similar. We have chosen eight clusters to show in appendix B,
from which the reader may see that, subjectively speaking, the network has learned quite well which
cats appear alike.

10 Conclusion

We have presented an end-to-end deep learning approach for pet cat verification and identification
using face imagery with minimal preprocessing. While there are few prior results against which to
measure ours, we are encouraged that even with minimal quality control on the input data, we achieve
state-of-the-art accuracy on the verification task and a strong showing on the identification task. In
our judgment, the remaining hurdles are not in the chosen architecture or training methodology, but
in the quality of the input data. Almost surely, we would achieve better results with curated data
which could, for example, be used to maintain a high quality pet registry database.

Bibliography

[1] Mei Wang and Weihong Deng. Deep Face Recognition: A Survey. arXiv e-prints, page
arXiv:1804.06655, Apr 2018.

[2] Thierry Pinheiro Moreira, Mauricio Lisboa Perez, Rafael de Oliveira Werneck, and Eduardo
Valle. Where Is My Puppy? Retrieving Lost Dogs by Facial Features. arXiv e-prints, page
arXiv:1510.02781, Oct 2015.

[3] Guillaume Mougeot, Dewei Li, and Shuai Jia. A deep learning approach for dog face verification
and recognition. In Abhaya C. Nayak and Alok Sharma, editors, PRICAI 2019: Trends in
Artificial Intelligence, pages 418–430, Cham, 2019. Springer International Publishing.

5



[4] U.S. Pet Ownership Statistics: Companion Animals. https://www.avma.org/
KB/Resources/Statistics/Pages/Market-research-statistics-US-pet-
ownership.aspx? [Online; accessed 09-October-2019].

[5] Pet Microchip FAQ. https://www.petfinder.com/dogs/lost-and-found-dogs/
microchip-faqs/. [Online; accessed 09-October-2019].

[6] A Keras implementation of YOLOv3 (Tensorflow backend). https://github.com/qqwweee/
keras-yolo3/. [Online; accessed 04-November-2019].

[7] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. CoRR, abs/1905.11946, 2019.

[8] Florian Schroff, Dmitry Kalenichenko, and James Philbin. FaceNet: A Unified Embedding for
Face Recognition and Clustering. arXiv e-prints, page arXiv:1503.03832, Mar 2015.

[9] DogFaceNet. https://github.com/GuillaumeMougeot/DogFacenet. [Online; accessed
03-December-2019].

[10] Tzu-Yuan Lin and Yan-Fu Kuo. Cat face recognition using deep learning. In 2018 ASABE Annual
International Meeting, page 1. American Society of Agricultural and Biological Engineers,
2018.

[11] Petfinder Developer API. https://www.petfinder.com/developers/. [Online; accessed
04-November-2019].

[12] Cat Face Detection using OpenCV. https://blogs.oracle.com/meena/cat-face-
detection-using-opencv. [Online; accessed 09-October-2019].

[13] Cat facial detection and landmark recognition in Python. https://github.com/marando/
pycatfd. [Online; accessed 10-October-2019].

[14] Visual Object Tagging Tool. https://github.com/microsoft/VoTT. [Online; accessed
04-November-2019].

[15] How to train your own YOLOv3 Detector From Scratch. https://
blog.insightdatascience.com/how-to-train-your-own-olov3-detector-from-
scratch-224d10e55de2. [Online; accessed 5-December-2019].

[16] YOLO: Real-Time Object Detection. https://pjreddie.com/darknet/yolo/. [Online;
accessed 04-November-2019].

[17] mean Average Precision. https://github.com/Cartucho/mAP. [Online; accessed 04-
November-2019].

[18] Inception-Resnet-V2. https://github.com/tensorflow/models/blob/master/
research/slim/nets/inception_resnet_v2.py. [Online; accessed 4-December-2019].

[19] EfficientNet Keras. https://github.com/qubvel/efficientnet. [Online; accessed 4-
December-2019].

[20] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In CVPR09, 2009.

[21] Xu Zhang, Felix X. Yu, Sanjiv Kumar, and Shih-Fu Chang. Learning spread-out local feature
descriptors. In The IEEE International Conference on Computer Vision (ICCV), Oct 2017.

[22] Zuheng Ming, Joseph Chazalon, Muhammad Muzzamil Luqman, Muriel Visani, and Jean-
Christophe Burie. Simple triplet loss based on intra/inter-class metric learning for face verifica-
tion. In 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), pages
1656–1664. IEEE, 2017.

[23] Alexander Hermans, Lucas Beyer, and Bastian Leibe. In defense of the triplet loss for person
re-identification. arXiv preprint arXiv:1703.07737, 2017.

6

https://www.avma.org/KB/Resources/Statistics/Pages/Market-research-statistics-US-pet-ownership.aspx?
https://www.avma.org/KB/Resources/Statistics/Pages/Market-research-statistics-US-pet-ownership.aspx?
https://www.avma.org/KB/Resources/Statistics/Pages/Market-research-statistics-US-pet-ownership.aspx?
https://www.petfinder.com/dogs/lost-and-found-dogs/microchip-faqs/
https://www.petfinder.com/dogs/lost-and-found-dogs/microchip-faqs/
https://github.com/qqwweee/keras-yolo3/
https://github.com/qqwweee/keras-yolo3/
https://github.com/GuillaumeMougeot/DogFacenet
https://www.petfinder.com/developers/
https://blogs.oracle.com/meena/cat-face-detection-using-opencv
https://blogs.oracle.com/meena/cat-face-detection-using-opencv
https://github.com/marando/pycatfd
https://github.com/marando/pycatfd
https://github.com/microsoft/VoTT
https://blog.insightdatascience.com/how-to-train-your-own-olov3-detector-from-scratch-224d10e55de2
https://blog.insightdatascience.com/how-to-train-your-own-olov3-detector-from-scratch-224d10e55de2
https://blog.insightdatascience.com/how-to-train-your-own-olov3-detector-from-scratch-224d10e55de2
https://pjreddie.com/darknet/yolo/
https://github.com/Cartucho/mAP
https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_resnet_v2.py
https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_resnet_v2.py
https://github.com/qubvel/efficientnet


[24] Triplet Loss and Online Triplet Mining in TensorFlow. https://omoindrot.github.io/
triplet-loss. [Online; accessed 4-December-2019].

[25] Raghavendra Kotikalapudi and contributors. keras-vis. https://github.com/raghakot/
keras-vis, 2017.

7

https://omoindrot.github.io/triplet-loss
https://omoindrot.github.io/triplet-loss
https://github.com/raghakot/keras-vis
https://github.com/raghakot/keras-vis


Appendices
A Verification Mistakes

Figure 9: Left pairs are incorrectly accepted as same; right pairs rejected as different. Images are titled with
the true cat label.

8



B Face Clustering

We use k-means clustering on the test embeddings with k=887, the number of unique cats, showing a
maximum of 8 images for 10 clusters. This demonstrates which cat images the network considers
similar. Images are titled according to cat label.

9



C Class Activation Maps

We visualize what the CNN is paying attention to with class activate maps of several examples,
using the last convolutional layer and the final global average pooling layer. The implementation is
provided by keras-vis [25].

10


	Introduction
	Related Work
	Data Set
	Face Detection
	Data Preparation
	Methodology
	Cat Face Verification
	Cat Face Identification
	Interpretability
	Conclusion
	Bibliography
	Appendices
	Verification Mistakes
	Face Clustering
	Class Activation Maps

