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Abstract

In this study, multi-class classification is conducted to diagnose intracranial hem-
orrhages and its five subtypes: intraparenchymal, intraventricular, subarachnoid,
subdural, epidural. Transfer learning is applied based on ResNet-50 and linear
windowing is compared with sigmoid windowing in its performance. Due to the
high imbalance in the number of examples available, an undersampling approach
was taken to provide a better balanced training dataset. As a result, the combination
of sigmoid windowing and combining three windows of interest showed the highest
F1 score. Through error analysis, it was shown that the correlation of subtype
and diagnosis of intracranial hemorrhage was not clear and next steps look toward
changing the architecture into 2 steps, where the first step diagnoses intracranial
hemorrhages, and the second step classifies subtype within the positively diagnosed
examples.

1 Introduction

Intracranial hemorrhages have fatal consequences depending upon its subtype, location, and size.
Radiologists are up to the task of evaluating CT(computed tomography) scans both accurately and
promptly, since some instances require immediate attention. A fast and accurate classification using
a machine learning algorithm well fitted to aid the current clinical workflow could provide critical
assistance. In this project, I use a single slice of a CT scan in DICOM image format as input. Then,
I preprocess the grayscale image to Hounsfield Units(HU) and select three different contrasts to
highlight the window of interest. Next, I use the pretrained weights from imagenet for ResNet-50
and further tune the weights to output a binary classification for each of the classes, one class for any
and 5 classes each representing subtype: intraparenchymal, intraventricular, subarachnoid, subdural,
epidural. The image data set is provided by ASNR(American Society of Neuroradiology) via the
kaggle competition, which is prelabeled by experts on the subtype of the intracranial hemorrhage.
The code for this project is shared in [1]]

2 Related work

In recent years, there has been a push towards domain specific classification algorithms. For
intracranial hemorrhage classification, since HU units used by CT scans have (-1000,1000) range,
whereas grayscale can only express (0,255), finding the correct windowing is crucial for an accurate
diagnosis. In a clinical setting, practitioners use a predetermined system window setting, specific for
each area of interest, i.e. "brain window", "subdural window". A recent study using deep learning
has shown that the traditional window setting can be further optimized and lead to a more accurate
diagnosis|2]. An approach using an ensemble of CNNS show that different architectures will focus on
different features and therefore a fine-tuned combination would be promising[3l], and 3D CNNs have
also proven to be more precise in certain cases because it takes advantage of the spatial connectedness
of hemorrhages [4]. In particular, by dividing the detection of intracranial hemorrhage and subtype
classification into a 2 step process, they were able to detect intracranial hemorrhages in a 30 second
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time frame which poses a great possibility to be implemented in a clinical setting [5]. Looking
deeper into how deep learning algorithms could be integrated in clinical settings, an algorithm has
also been developed to alert medical practitioners and prioritize urgent patients according to their
classification[6]].

3 Dataset and Features
3.1 Background : Hounsfield Scale

The Hounsfield scale represents the density of tissues by using the attenuation of X-ray, which is
proportional to their physical density. In HU, water is 0, air is -1000 , and bone is +1000. To display
CT scans, a contrast enhancement method called “windowing” is used. By choosing two parameters,
window level(L) and window width(W), viewers are able to see the specified window([L-W/2,
L+W/2]) mapped onto the full range of gray scale([0,255]). Anything above the window would be
seen as white, and anything below would be seen as black. In particular, commonly used parameters
for a brain window is L=40, W=80.

3.2 Dataset

The dataset is from Kaggle RSNA Intracranial Hemorrhage Classification competition round 1[/7]]
and were labeled by experts. The images were in DICOM(Digital Imaging and Communications in
Medicine) format, a standard format for handling medical images. This format contains network
communications protocol that allows the use across different machines and the transfer of patient data.
The total number of examples available were 674258, but there were two major sources of imbalance
in the dataset. First, there were significantly less positive examples than negative(healthy) examples.
Secondly, there was also an imbalance in the number of positive examples per subtype. In order
to ensure efficient training, I equalized each training batch by under-sampling so that each subtype
had equally 12.5 percent of positive examples and there were 37.5 percent of negative examples.
However, since each example could belong to multiple subtypes, some subtypes had higher than 12.5
percent of examples.

Type Number of examples Number of training examples per batch
Positive 97103(0.14) 80
Negative 577157(0.86) 48
Epidural 2761 16
Intraparenchymal 32564 16
Intraventricular 23766 16
Subarachnoid 32122 16
Subdural 42496 16
Total 674260(1) 128

Table 1: Data set
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Figure 1: Overview of Preprocessing

Most of the images were (512,512), which is the most common image size for CT scans. Then, images
was either padded or clipped resulting in image size of (448,448,1). The first step in preprocessing the
data was to change the pixel values so that it is represented HU(Hounsfield Units). Then, I applied
windowing for three windows: brain window(WW=80, WL=40), blood window(WW=130,WL=50),
bone window(WW=2800,WL=600). By using sigmoid windowing, it was possible to also capture
the data outside of the window instead of setting it all to zero.
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Figure 2: Windowing Methods: (a) Linear windowing (b) Sigmoid windowing: The constant U is the
upper limit of windowing functions, and € is the margin between the upper/lower limits and window
end/start gray levels which determine the slope at the center. Figure from [2]
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Each of the resulting images served as separate channels, so that the output of the preprocessing step
resulted in an image with size (448,448,3). Experimenting with the best size for efficient training, a
max pooling step was optionally included and downsized the image to (224,224,3).

4 Methods

I add a global average pooling layer and a fully connnected layer on top of ResNet-50 to get a
classification output of (m, 6). I use the pretrained weights from imagenet for ResNet-50 and further
tune the weights to output a binary classification for each of the classes. Since each image could be
multiple subtypes, binary cross-entropy loss function was used.

L(i) = —(yP1og g + (1 — ) log (1 — 57)) 2)
where
gm = predicted label value for i th example
y(i) = true label value for i th example
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Figure 3: Model overview

5 Experiments/Results/Discussion

Table 2 shows the precision, recall, F1 scores evaluated on the test sets with each windowing applied
in the data preprocessing phase. All models were trained with mini-batch size of 128 and for 10
epochs to fit machine capabilities and time duration for testing. When using 10 steps per epoch, the
weights overfitted to the training set after 3 epochs and the validation loss did not go lower than 0.4.
Then, the steps per epoch was raised to 40-80, which was found to have lowest validation loss at 10
epochs. Another path I took was to increase the image size from (224,224,3) to (448,448,3) while still
keeping the steps per epoch as 10. Both methods had similar effects in that it provided more data.



Any Epidural Intraparenchymal
P R F1  num R F1  num P R F1  num
W1 | 0.14 0.28 0.19 587 0 0 19 | 0.05 0.03 0.04 198
W2 | 0.15 041 0.22 616 0 0 16 | 0.05 0.16 0.08 200
W3 | 0.15 038 0.22 585 0 0 21 | 0.06 0.08 0.07 193
W4 | 08 096 088 80 | 047 047 047 19 | 051 0.65 0.57 31
Intraventricualr Subarachnoid Subdural
P R F1  num P R F1  num P R F1  num
W1 | 0.06 0.09 0.07 150 | 0.03 0 0.01 203 0 0 0 242
W2 | 006 0.15 0.08 158 | 0.06 0.04 0.05 212 | 0.06 0.01 0.02 281
W3 | 004 0.15 0.07 130 | 0.07 0.05 0.06 185 | 0.12 0.01 0.03 268
W4 1083 0.17 029 29 | 056 044 049 32 | 073 031 044 35
Table 2: Performance summary(1): W1=Brain Window with linear windowing(WL=40,WW=80),
W2=Subdural Window with linear windowing(WL=50, WW=130), W3=soft tissue window with
linear windowing(WL=100, WW=220), W4=Bone window (40,80), Subdural window (50,130), Bone
window (600,2800) put together in RGB format with sigmoid windowing, P=precision, R=recall

P =R=R=l"]

Figure 4: Error analysis: These were the first three images that were mislabeled in the test set. It was

shown that the architecture did not make a clear relation that there would be a true subtype if and
only when it was an intracranial hemorrhage.

6 Conclusion/Future Work

The highest performing algorithm was chosen that had the lowest validation loss, which was the one
using sigmoid windowing with 3 different windows. There were many studies using traditional clinical
window setting values, and with linear windowing. Since using different windowing techniques
resulted in significantly different results, the next step I would take would be to find the best window
setting values for sigmoid windowing. Then, test the most successful previous models with the
different window settings. In addition, I would make the classification into a 2 step process to first
detect intracranial hemorrhages and then to classify the subtypes.

7 Contributions

This work is done solely by the author. The author would like to thank Jon Farrell Braatz II from
Stanford University for mentoring throughout this project.
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