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Abstract

Within the field of medicine, automated annotation of Computed Tomography (CT)
scans is poised to revolutionize the practice of radiology and to improve patient
care through increased efficiency and accuracy of diagnosis. In this work, we
develop a deep learning algorithm designed for the automated detection of liver
lesions on CT scans. We explore three distinct neural network architectures for the
object detection task, with increasing complexity respectively. These consist of a
baseline convolutional network, a transfer learning approach which incorporates
VGG-16 features into the baseline model, and finally the Faster R-CNN network.
We find that Faster R-CNN greatly outperforms the baseline and can achieve a
sensitivity of 0.5 with one average false positive per image even when trained and
evaluated on noisy labels.

1 Introduction

Computed Tomography (CT) scans are a widely used imaging modality in global healthcare systems
owing to their fast acquisition time and high resolution 3D rendering of the human body. These scans
are read by radiologists who spend hours each day visually inspecting and interpreting the images, to
provide a report that will be used to guide clinical care. Initially, lesion detectors will likely serve as
an aid to the radiologist to highlight potential lesions that they may have missed. This will augment
the radiologists ability to process large volumes of images and scale to the volumes required for our
growing healthcare system, without a simultaneous decrease in accuracy.

This work specifically explores the automated detection of liver lesions in CT images. The liver
performs essential filtration of blood from the digestive tract as well as detoxifies and metabolizes
harmful chemicals in the body. Because the liver is the largest internal organ by mass and in a
healthy state appears relatively homogenous on CT Imaging, it is an appropriate baseline target
for lesion detection. Lesions in the liver consist of benign cysts, collections of blood (hematoma),
and hepatocellular carcinoma among other pathologies. Our detector does not aim to classify these
lesions, but instead to localize any abnormality that is present.

Specifically, we explore three neural network architectures for the task of lesion detection. The
input to each model consists of 3 slices of CT image data of the liver (the slice with the lesion of
interest and its two adjacent slices which are provided for volumetric context). The output of the
model consists of 4 bounding box coordinates, which attempt to localize the lesion. The first model
architecture consists of a baseline model with 4 convolutional and one fully connected layer. Next,
we develop a model that computes VGG-16 features from the input and concatenates these with the
input before it is passed into the baseline convolutional model. Finally, we implement the Faster
R-CNN architecture. We discuss the performance of these models and compare them to a reference
publication which utilizes the same dataset.
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2 Related work

Our project is based on the DeepLesion paper published by Yan, Lu and Summers [3]. Yan et al
produced a 220GB CT lesion dataset by mining a hospital imaging system, and released it for public
use under the name of "DeepLesion". Using this dataset, they created a deep learning model for
automated localization of CT Scan lesions which aimed to detect any type of lesion in any part of the
body, and they report a sensitivity of 81.1 percent with five false positives per image. The researchers
chose VGG16 as an ImageNet backbone and implemented a modified RCNN architecture for lesions
localization. We instead focus only on liver lesions, and thus use a subset of the DeepLesion dataset,
with the goal of achieving a higher sensitivity and better false positive rate than that reported by Yan
et al. Additional prior work on liver lesion detection in CT scans can be divided into deep learning
(convolutional) approaches and geometric approaches, and are described below.

Convolutional Methods: Chris et al [2] explore liver segmention and lesion localization using FCNs
and conditional random fields (CRFs). They achieve a Dice score of 94%. Li et al [4] also perform
liver tumor segmentation but compare results to tradional ML models, and report recall of 84.34%.
These studies differ to our study in that they performed segmentation rather than bounding box
regression, and focused exclusively on liver tumors rather than all type of liver abnormalities.

Geometric Methods: Rusko et al [5] perform liver lesion detection using algorithmic detection of
basic geometric features (such as assymetry, compactness, and volume) rather than a deep learning
method, and are able to achieve a detection rate of 92%. Additionally, Ben-Cohen et al [1] perform
detection using adaptive region growing and mean shift clustering, and are able to achieve detection
rate of 90%.

3 Dataset and Pre-processing

We used the publicly available DeepLesion dataset with over 10,000 Computed Tomography (CT)
studies and over 4,000 patients [6]. This data set includes approximately 32,000 2D slices of CT
scans that are annotated with lesion type, bounding box and metadata. The image files are available
as 512x512 pixel 2D slices stored in png format for compression. We modified the download script
and successfully downloaded the 220GB dataset to a local machine for pre-processing.

This work required extensive pre-processing and understanding of the CT medical imaging format.
The raw values in CT data consist of Hounsfield units, which are units of xray attentuation. When
radiologists view CT images on the computer the images are "windowed" such that a specific range
of Hounsfield units is mapped to gray scale and values outside the range are rendered as black or
white. This process aids in the viewing of specific organs. We wrote the appropriate python scripts
for parsing the raw png files and applying the appropriate windowing to each. For each slice we
selected the neighbor slices to produce a three channel input, which results in a model input shape
of 512x512x3. All pixel values were re-scaled to [0,255]. Of these, the liver lesions were selected
and moved to an AWS instance for model training. This resulted in a final 10GB dataset with 1989
training set images, 179 validation set images, and 203 test set images. An example image is shown
in Figure 1.

4 Methods

Figure 1: Example CT Image

We divide the methods and results sections into two subsections:
a baseline convolutional model with and without VGG-16 transfer
learning and a final model which uses the Faster R-CNN architecture.

4.1 Baseline and VGG Transfer Learning Models

4.1.1 Shared Model Features

Both the baseline model and the VGG transfer learning model were
convolutional neural network models, and both utilized the mean
squared error loss function, given by MSE = 1

n

∑n
i (Yi − Ŷi)2,

(where Yi and Ŷi represent 4d bounding box ground truth and pre-
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diction respectively). Both were trained on the training set with Adam optimization (with β1 = 0.9
and β2 = 0.999), and results were analyzed using the validation set during iteration. The test set was
not used until the end of the study for model accuracy calculation.

4.1.2 Baseline Convolutional Model

Figure 2: Baseline Model Ar-
chitecture

Figure 2 describes the baseline convolutional model architecture,
which consisted of 2 convolutional layers and a pooling layer, fol-
lowed by 2 convolutional layers, a pooling layer, and a dense layer
with 4 outputs for the bounding box. The dimensions of these filters
are shown in Figure 2. The Relu function was used for all Activation
layers. No form of regularization was applied to the baseline model.

4.2 Baseline with Transfer Learning

For the baseline with transfer learning model, we employed two strategies for incorporating VGG-16
features into the baseline model. First, we added a VGG-16 frontend to the baseline model by inputting
the image through VGG-16 and extracting the feature matrix at various VGG-16 convolutional layers
(Convolutional blocks 2,3, and 4) and then passing the resulting feature matrix as input to the baseline
model.

Second, we utilized a modified VGG16 architecture (which removed the block 4 and 5 pooling layers)
in order to generate a feature matrix which had enhanced resolution (output size 64x64x512). This
feature matrix was then upsampled to (512x512x512) and concatenated with the original input image.
This modified input served as the input to the original baseline model.

Our experimental analysis of these methods revealed that the latter architecture (concatenation of
VGG features with the original input image) was more robust and thus the remainder of the paper
focuses on this method.

4.3 Faster RCNN

The Faster RCNN model uses a convolutional neural network to determine region proposal. This
CNN, called a Region Proposal Network(RPN), predicts object bounds and class scores. The RPN
shares convolutional features with the detection network, allowing for low-computational-cost region
proposals. The bounding boxes predicted by the RPN are fed into a Region of Interest (ROI) pooling
layer which performs max pooling on inputs of different shape and outputs feature maps of the same
size. The feature maps are then fed into a classifier network that outputs class probabilities as well as
into a regressor network that outputs the final bounding boxes. The RPN and the final classifier and
regressor can be trained alternatively or at the same time, the latter being faster.

The RPN loss for an image is defined as:

L({pi}, {ti}) =
1

Ncls

∑
i

Lcls(pi, p
∗
i ) + λ

1

Nreg

∑
i

p∗iLreg(ti, t
∗
i ) (1)

Where pi is the predicted probability of the anchor being an object and p∗i is the ground truth label,
which is 1 when the IoU of the anchor box i and any ground truth box is > 0.7 and zero otherwise. ti
and t∗i are the vectors representing the parameterized bounding boxes coordinates of the predicted and
ground truth box respectively. Lcls is the log loss over the two classes (foreground and background)
and Lreg is defined as R(ti − t∗i ), where R is smooth L1 loss. λ is a weight parameter.

5 Experiments and Results

5.1 Baseline and VGG Transfer Learning Models

5.1.1 Hyperparameter Selection

For the baseline model, the main hyperparameters we tuned were the batch size and learning rate.
For the batch size, we trained the model for 1 epoch on a small subset of data over a range of batch
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Model MSE Sensitivity

Baseline Train 0.00077 0.96
Baseline Test 0.065 0.069

Baseline+VGG Train 0.0025 0.79
Baseline+VGG Test 0.067 0.079

Figure 3: Baseline and Baseline+VGG Results

(a) Baseline Train (b) Baseline Test (c) Baseline+VGG Train (d) Baseline+VGG Test

Figure 4: Example Visualizations of Baseline and Baseline+VGG Model Performance on Train and Test Sets

sizes, including 1,2,4,8, and 16. We found that the epoch trained fastest with a batch size of 8. Next,
we trained the baseline model for 20 epochs using a logarithmic range of learning rates, and found
that 0.003 produced a promising initial loss curve whereas 0.01 quickly failed to converge. A similar
analysis was performed for the transfer learning model which led to the selection of a batch size of 1
and learning rate 0.0001. For the transfer learning model we also chose a dropout rate of 0.05.

5.1.2 Metrics

Both the baseline and VGG transfer learning models utilized the intersection over union (IoU) metric,
given by IoU =

AreaOverlap

AreaUnion
. For the train and test set, we considered a prediction to be accurate if

the IoU was greater than 0.1. Because both of these methods produced single bounding box outputs,
the accuracy and sensitivity are equal. When discussing the Faster RCNN network, however, and
comparing to existing literature, sensitivity becomes more important as multiple regions may be
proposed.

5.1.3 Results

Results for final loss and sensitivity are reported in Figure 3. The baseline model was trained for
150 epochs and was able to achieve 96% sensitivity on the training set, however failed to generalize
and only achieved a 6.9% sensitivity on the test set. The transfer learning model (baseline with
concatenated features from VGG16) was trained for 70 epochs and achieved reasonable sensitivity
on the training set (79%), and very slightly increased sensitivity on the test set (7.9%) compared
to baseline. Clearly, both of these models were overfitting the training data. However, the transfer
learning model was able to slightly increase test set sensitivity, likely because of a combination of
additional information from VGG features and from mild regularization via dropout.

5.2 Faster R-CNN

We set Faster R-CNN to run with anchor scales 16, 24, 32, 48 and 96 and three anchor ratios (1:2, 1:1
and 2:1) in line with the anchor configuration in the DeepLesion paper [6]. We used ResNet50 as the
feature network. The train/validation split used was 76/15/9 (1660/329/203). After 150 epochs the
validation losses for the RPN as well as the final regressors and classifiers converged.

The metrics tracked were the RPN loss of both the RPN classifier and regressor as well as the final
classifier and regressor on a validation set, shown in Figure 6. We also computed the false positive
rate and sensitivity on the previously unseen test set. We found a test set false positive rate of 67%
(meaning 2/3 of predictions made were false positives) and a sensitivity of 50%. An example accurate
Faster RCNN test set prediction is shown in Figure 5.
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(a) RPN Classifier (b) RPN Regression (c) Detector Classifier (d) Detector Regression

Figure 6: Faster RCNN RPN and Detector Loss Curves

6 Discussion

Figure 5: Faster-RCNN Pre-
diction.

As the information content in CT scans is highly complex and vari-
able, we did not expect our baseline model to achieve high accuracy.
Although both the CNN baseline and the transfer learning model
(with concatenated features from VGG-16) achieved better than
random-chance performance on a test-set, they clearly could be
significantly improved upon. During the experimentation for the
transfer learning model, we originally attempted to pass the input
through a VGG frontend rather than concatenating VGG features
to the input. It was interesting to note that this former method pre-
vented our model from overfitting on the training set as much as the
baseline was able to. We believe this is because of the loss of spatial information incurred during
the VGG front end extraction. Our final transfer learning model, where the VGG16 features were
concatenated to the input and then fed into the baseline model, was able to get comparable loss to
the baseline and improved the test performance marginally (0.06 vs 0.07 test set sensitivity). Using
Faster R-CNN, as expected, improved our baseline results dramatically and we got results comparable
with the existing literature, when taking into account additional context. Prior work referenced at
the beginning of this paper largely achieved sensitivity measures ranging from 80 to 90% for liver
lesion detection, compared to our reported 50% with Faster RCNN. However, upon closer inspection
we find that Yan et al [3] report a range of sensitivities for liver lesion detection as a function of
false positives per image. They are able to achieve approximately 90% sensitivity but with 10 false
positives per image on average, versus 65-70% sensitivity with 1 false positive per image. In this
work we achieve 50% sensitivity with approximately 1.1 false positives per image, and thus our
results are comparable when considering the operating point of the FROC curve. Tuning our Faster
RCNN architecture to explore a range of FROC operating points is discussed in future work below.

A challenge that we faced was working with noisy labels. The labels from our dataset only identify
the main lesion in the CT scan and leave out other lesions that are present (a problem that is inherent
to the DeepLesion dataset and publication [3]). This both adds noise to the training process as well as
inflating the false positive rate.

7 Conclusion and Future Work

In this work we explored three model architectures for automated liver lesion localization in CT
scans. Our custom built baseline model and transfer learning model with VGG feature extraction both
were able to overfit to the training dataset, but failed to generalize on the test set. The Faster RCNN
architecure performed comparably to reference literature when taking into account false positive rate.
In the future we would like to explore the trade off between Faster RCNN sensitivity and higher
false positive rate. We would also explore the effect of using different feature networks for Faster
RCNN such as VGG-16. Finally, we would expand our analysis to include lesions from all parts of
the human body, not just the liver.

8 Contributions

Vadim Piccini Yakubenko set up and trained Faster-RCNN, made most of the poster and contributed
to loading the VGG-16 layers to the baseline model. Surya Narayanan worked on setting up a
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baseline model, and contributed to the proposal, report and this paper. Sheun Aluko contributed to
data pre-processing, baseline and transfer learning architectures, and to this paper.
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