
 

 

Abstract 

  

Facial expression generation and photo-to-cartoon 
transfer are two interesting and useful tasks. A series 

of approaches have been proposed to tackle them 

separately. This project proposes an end-to-end 
stacked jointly learning architecture for these two 

tasks. With two methods to stack the two GANs, we 

explore whether the order of GAN will have influence 

on the quality of final outputs. Our experiments show 

that transferring the original face photo to cartoon 
style before generating multiple expressions will 

provide outputs with slightly better quality. 
 

1. Introduction 

Facial expression generation transforms the 

expression of a given face photo to a target one 

without affecting the identity properties and has 

applications in facial animation, human-computer 

interactions, entertainment, etc. Photo-to-cartoon 

transfer is a task that transfers style of real-world 

photo to cartoon and its applications range from 

artistic interests, publication in media to children 

education. These two tasks are naturally connected 

since it is interesting to see the cartoonization of face 

photos with different expressions. 

In this project, we propose an end-to-end stacked 

jointly learning architecture for these two tasks. A 

series of statistical learning approaches have been 

proposed to tackle the two tasks separately. For 

example, StarGAN model (Choi et al., 2018) 

transforms the face image to multiple new expressions 

based on the high-level semantic understanding of the 

input image. CartoonGAN (Chen et al., 2018) 

proposes a solution to transforming photos of real-

world scenes into cartoon style image. However. we 

think they share one fundamental characteristic 

essentially and the performance will be improved if 

we train the two GANs jointly. Therefore, we stack 

StartGAN and CartoonGAN to complete the two tasks 

together. One more interesting question is that 

whether the order of each GAN in the stacked model 

has impact on the quality of final output. In other 

words, whether we should transfer the style first or 

generate the multiple expressions first. We propose 

two ways to stack the two GANs sequentially and aim 
to test which provides better results. To the best of our 

knowledge, this is the first research that tries to 

explore this topic. 
  

2. Dataset 

2.1. RAF-DB 

The database we used to generate facial expressions 

is the Real-world Affected Faces Database (RAF-

DB). The RAF-DB contains 12271 training samples 

and 3068 testing samples from real-world images with 

7-dimensional expression categories (Surprise/ Fear/ 

Disgust/ Happiness/Sadness/Anger/Neutral). In this 

project we use the aligned images which are pre-

processed with size of 100x100 pixels. 

2.2. IIT-CFW 

We use IIT-CFW dataset to train our own face 

photo to cartoon style transfer model. This dataset is a 

large set of cartoon faces in the wild harvested from 

Google image search and contains 8,928 annotated 

cartoon faces of famous personalities of the world 

with varying professions. 

 

3. Approach 

3.1. Separate models 

We trained StarGAN for facial expression 

generation and CartoonGAN for cartoon style transfer 

separately. We modified the original StarGAN model 

and trained it with RAF-DB data. The architecture of 

the model is shown in Fig.1. As illustrated below, we 

then input the sample photos into the trained model 

and get the GAN-generated-expressions photos. 
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Fig.1 Architecture of StarGAN 

 

The loss function of the StarGAN model has two 

parts: 

 

 
     

We trained CartoonGAN model with IIT-CFW 

dataset for photo-to-cartoon style transfer. The 

architecture of the model is shown in Fig.2.   
 

 
Fig.2.  Architecture of CartoonGAN 

 

 The loss function of the CartoonGAN is as 

follows: 

 

For the first part Adversarial loss, the goal of training 

the discriminator D is to maximize the probability of 

assigning the correct label to generated image such 

that generator G can be guided correctly by 

transforming the input to the correct manifold. The 

second part Content loss is to ensure the resulting 

cartoon images retain semantic content of the input 

photos. We adopt the high-level feature maps in the 

VGG pre-trained model. 

 

3.2. Stacked models 

3.2.1 Architecture 

The two GANs are stacked together and we train 

the stacked model end-to-end. We propose two 

methods to stack GANs: (1) StackGAN A: StarGAN 

is considered as the first GAN and CartoonGAN as the 

second, and (2) StackGAN B: the order of GANs is 

flipped. Here both methods use RAF-DB as StarGAN 

training dataset and IIT-CFW for CartoonGAN. More 

specifically, in StackGAN A, the original face photo 

is trained to generate expressions and then trained to 

transfer to cartoon style in each iteration. While for 

StackGAN B, the original photo is trained to transfer 

style and then trained to generate multiple expression 

in each iteration,. In addition to the new architecture, 

this project aims to explore which way to stack GANs 

will output better results.  

The architecture of our stacked model is shown in 

Fig.3. 

 
Fig.3. Architecture of StackGAN 

 

3.2.2 Loss function 

For StackGAN A with order StarGAN-

CartoonGAN, the loss function of the first GAN is the 

same with StarGAN in separate model. While the 

generator of the second GAN takes the generated 

images from the first GAN as inputs, so the loss 

function of the second GAN is changed accordingly. 

 

 
For StackGAN B with order CartoonGAN-

StarGAN, the loss function of the first GAN is the 

same with CartoonGAN in separate model. Similar 

with StackGAN A, The generator of the second 

GAN will take the generated images from the first 

GAN as inputs.  

 



 

 

 
    The final loss function of the stacked model in both 

Stacked Model (1) and (2) is the same and as follows. 

 
 

3.3. Hyper parameters 

    Table 1 shows the hyper parameters we used for 

training StackGAN. 

Table 1. Hyperparameters for StackGAN 

 
 

4. Results 

We implemented our StackGANs using both Torch 
and Tensorflow 2.0 and in Python language. All 

experiments were performed on an NVIDIA 16G 

GPU. We test StackGAN A and StackGAN B with the 

same set of original face photos in the RAF-DB test 

set with neutral expression (in total 680 photos). Both 

models will generate new face photos with multiple 

expressions in cartoon style. We will present selected 

results for both models and compare them in 
Evaluation part. 

4.1. Training time 

For each epoch the training time for StackGAN A and 

StackGAN B is similar, both are about 3300s. Here 

one epoch is 1000 iterations. Since StarGAN needs 

much more iterations than CartoonGAN, in 

StackGAN A, StarGAN generates intermediate 

outputs for CartoonGAN every 1000th iteration, while 

in StackGAN B, CartoonGAN generates intermediate 

outputs for StarGAN every iteration. Saving 

intermediate outputs takes some time so the total 

training time for StackGAN B is longer than 

StackGAN A. 

4.2. Convergence 

For both StackGAN A and StackGAN B, we run 

100,000 iterations. The convergence plots from 

tensorboard are shown as follows. Fig.4 displays the 

StackGAN A convergence plot for Gstar and Dstar. 

Fig.5 shows the StackGAN B convergence plot for 

Gstar and Dstar. As we observe, both models become 

stable after 100,000 iterations. There is no big 

difference in the convergence speed. 

 
 Fig.4. Convergence plot for StackGAN A 

 
Fig.5. Convergence plot for StackGAN B 

4.3. Evaluation 

4.3.1 Qualitative evaluation 



 

 

The Fig.6 displays both the original photos and 

cartoon expression from StackGAN A and B. The 

expressions from left to right are anger, disgust, fear, 

happiness, sadness and surprise. As seen in Fig. 6, 

StackGAN A and B both properly maintain the 

personal identity and facial features. But it seems that 

StackGAN B generates more natural-looking 

expressions and cartoon styles. We believe that the 

superiority of StackGAN B in the image quality is due 

to that style transfer has implicit feature augmentation 

effect. CartoonGAN produce high-quality cartoon 

style photos by reproducing the necessary clearly 

edges and smooth shading while retaining the content 

of the original photo. Therefore, in StackGAN B, 

StarGAN can take advantage of the feature 

augmentation effect by CartoonGAN and generates 

better expression photos compared with in StackGAN 

A. However, we do notice that our StackGANs are 

unable to generate very differentiating disgust, fear 

and surprise expressions. This is mostly caused by the 

fact that these expressions in the training dataset itself 

is not differentiating. 
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Fig.6. Sample results by StackGAN A and B 

4.3.2 Quantitative evaluation 

    For a quantitative evaluation, we conducted a 

survey in which we ask people to classify the 

expression of our output photos manually and then 

score on the expression quality and cartoon quality. 

To ensure we get the subjective opinion, we designed 

two versions of questionnaire A and B with each 

contains the 15 outputs from either StackGAN A or 

StackGAN B generated for the same original face 

photos. Moreover, we included only the anger, 

happiness and sadness for the same reason we 

mentioned in 4.2.1. The source of outputs is masked 

and equally distributed in each questionnaire. The 

links to questionnaires are in Appendix part. We 

collected 40 response in total with 22 from 

questionnaire A and 18 from questionnaire B.  

    Table 2 shows the average scores on expression 

quality and cartoon quality. We can see that 

StackGAN B has higher scores on both expression 

quality and cartoon quality and this is consistent with 

our own observations. Table 3 shows the accuracy of 

the expressions in our output photos. It shows that 

except for sadness, StackGAN B has higher accuracy 

on other expressions. On average, StackGAN B’s 

expressions classification accuracy is 6% higher than 

StackGAN A’s. Again, this is consistent with quality 

scores and our own observations. 



 

 

Table 2. Average Scores on Quality 

Quality Scale (1-5) StackGAN A StackGAN B 

Expression Quality 3.15 3.32 

Cartoon Quality 3.06 3.25 

 

Table 3. Accuracy of expressions  

Accuracy anger happiness sadness Total 

StackGAN A 72% 76% 89% 79% 

StackGAN B 86% 84% 86% 85% 

 

5. Discussions and Future Work 

From the results and comparison of StackGAN A and 
StackGAN B, we conclude that  

(1) Almost no time difference in terms of training 
each epoch for both StackGANs. However, 
since the output frequency for the 
intermediate photos prepared for next GAN 
training is higher, the actual training time for 
StackGAN B is slightly longer than 
StackGAN A.  

(2) No significant difference on the convergence 
rate for both StackGANs.  

(3) Switching the training sequence has some 
impact on the final output photos. Our survey 
assessing both quality and accuracy of the 
outputs shows that people tends to prefer 
StackGAN B a little more. We believe this 
superiority is caused by the fact that style 
transfer has implicit feature augmentation 
effect.  

During the training and analyzing results, we do 
notice a few points that we would like to work on 
given more time.  

(1) The quality of training data is the key to the 
generated output quality. Unfortunately, we 
notice the image quality from RAF-DB is not 
very clear since the dataset is prepared for 
classification task not for GAN task. If we can 
get clearer images, we are able to generate 
better result. 

(2) Running either StackGAN A or StackGAN B 
requires at least a 16GB GPU. We believe 
some steps in the architecture is not 
necessary. If given more time, we would like 
to optimize the architecture to make the 
model able to run in a less memory-
consuming setting. 

(3) The architecture of StarGAN and 
CartoonGAN share similar layer structure. 
We believe if we add some more layers, such 
as Maxpool layer to preserve some high-level 

features in the expression before we send it to 
style transform, we can get better outputs.     

Appendix  

[1] Questionnaire links: 
https://forms.gle/SkHSP2fkmTouQ8Co9 and 
https://forms.gle/YQnm6gCQMJttPUih8. 
[2] Github page:  
https://github.com/XiaoyiLi-sf/CS230_StackedGAN 
[3] Video page: 
 https://www.youtube.com/watch?v=Z0xXroyExUQ 
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