

Abstract

Facial expression generation and photo-to-cartoon
transfer are two interesting and useful tasks. A series

of approaches have been proposed to tackle them

separately. This project proposes an end-to-end
stacked jointly learning architecture for these two

tasks. With two methods to stack the two GANs, we

explore whether the order of GAN will have influence

on the quality of final outputs. Our experiments show

that transferring the original face photo to cartoon
style before generating multiple expressions will

provide outputs with slightly better quality.

1. Introduction

Facial expression generation transforms the

expression of a given face photo to a target one

without affecting the identity properties and has

applications in facial animation, human-computer

interactions, entertainment, etc. Photo-to-cartoon

transfer is a task that transfers style of real-world

photo to cartoon and its applications range from

artistic interests, publication in media to children

education. These two tasks are naturally connected

since it is interesting to see the cartoonization of face

photos with different expressions.

In this project, we propose an end-to-end stacked

jointly learning architecture for these two tasks. A

series of statistical learning approaches have been

proposed to tackle the two tasks separately. For

example, StarGAN model (Choi et al., 2018)

transforms the face image to multiple new expressions

based on the high-level semantic understanding of the

input image. CartoonGAN (Chen et al., 2018)

proposes a solution to transforming photos of real-

world scenes into cartoon style image. However. we

think they share one fundamental characteristic

essentially and the performance will be improved if

we train the two GANs jointly. Therefore, we stack

StartGAN and CartoonGAN to complete the two tasks

together. One more interesting question is that

whether the order of each GAN in the stacked model

has impact on the quality of final output. In other

words, whether we should transfer the style first or

generate the multiple expressions first. We propose

two ways to stack the two GANs sequentially and aim
to test which provides better results. To the best of our

knowledge, this is the first research that tries to

explore this topic.

2. Dataset

2.1. RAF-DB

The database we used to generate facial expressions

is the Real-world Affected Faces Database (RAF-

DB). The RAF-DB contains 12271 training samples

and 3068 testing samples from real-world images with

7-dimensional expression categories (Surprise/ Fear/

Disgust/ Happiness/Sadness/Anger/Neutral). In this

project we use the aligned images which are pre-

processed with size of 100x100 pixels.

2.2. IIT-CFW

We use IIT-CFW dataset to train our own face

photo to cartoon style transfer model. This dataset is a

large set of cartoon faces in the wild harvested from

Google image search and contains 8,928 annotated

cartoon faces of famous personalities of the world

with varying professions.

3. Approach

3.1. Separate models

We trained StarGAN for facial expression

generation and CartoonGAN for cartoon style transfer

separately. We modified the original StarGAN model

and trained it with RAF-DB data. The architecture of

the model is shown in Fig.1. As illustrated below, we

then input the sample photos into the trained model

and get the GAN-generated-expressions photos.

Generating Cartoon Style Facial Expressions with StackGAN

Xiaoyi Li

Stanford University
xiaoyili@stanford.edu

Xiaowen Yu

Stanford University
wyu1207@stanford.edu

Fig.1 Architecture of StarGAN

The loss function of the StarGAN model has two

parts:

We trained CartoonGAN model with IIT-CFW

dataset for photo-to-cartoon style transfer. The

architecture of the model is shown in Fig.2.

Fig.2. Architecture of CartoonGAN

 The loss function of the CartoonGAN is as

follows:

For the first part Adversarial loss, the goal of training

the discriminator D is to maximize the probability of

assigning the correct label to generated image such

that generator G can be guided correctly by

transforming the input to the correct manifold. The

second part Content loss is to ensure the resulting

cartoon images retain semantic content of the input

photos. We adopt the high-level feature maps in the

VGG pre-trained model.

3.2. Stacked models

3.2.1 Architecture

The two GANs are stacked together and we train

the stacked model end-to-end. We propose two

methods to stack GANs: (1) StackGAN A: StarGAN

is considered as the first GAN and CartoonGAN as the

second, and (2) StackGAN B: the order of GANs is

flipped. Here both methods use RAF-DB as StarGAN

training dataset and IIT-CFW for CartoonGAN. More

specifically, in StackGAN A, the original face photo

is trained to generate expressions and then trained to

transfer to cartoon style in each iteration. While for

StackGAN B, the original photo is trained to transfer

style and then trained to generate multiple expression

in each iteration,. In addition to the new architecture,

this project aims to explore which way to stack GANs

will output better results.

The architecture of our stacked model is shown in

Fig.3.

Fig.3. Architecture of StackGAN

3.2.2 Loss function

For StackGAN A with order StarGAN-

CartoonGAN, the loss function of the first GAN is the

same with StarGAN in separate model. While the

generator of the second GAN takes the generated

images from the first GAN as inputs, so the loss

function of the second GAN is changed accordingly.

For StackGAN B with order CartoonGAN-

StarGAN, the loss function of the first GAN is the

same with CartoonGAN in separate model. Similar

with StackGAN A, The generator of the second

GAN will take the generated images from the first

GAN as inputs.

 The final loss function of the stacked model in both

Stacked Model (1) and (2) is the same and as follows.

3.3. Hyper parameters

 Table 1 shows the hyper parameters we used for

training StackGAN.

Table 1. Hyperparameters for StackGAN

4. Results

We implemented our StackGANs using both Torch
and Tensorflow 2.0 and in Python language. All

experiments were performed on an NVIDIA 16G

GPU. We test StackGAN A and StackGAN B with the

same set of original face photos in the RAF-DB test

set with neutral expression (in total 680 photos). Both

models will generate new face photos with multiple

expressions in cartoon style. We will present selected

results for both models and compare them in
Evaluation part.

4.1. Training time

For each epoch the training time for StackGAN A and

StackGAN B is similar, both are about 3300s. Here

one epoch is 1000 iterations. Since StarGAN needs

much more iterations than CartoonGAN, in

StackGAN A, StarGAN generates intermediate

outputs for CartoonGAN every 1000th iteration, while

in StackGAN B, CartoonGAN generates intermediate

outputs for StarGAN every iteration. Saving

intermediate outputs takes some time so the total

training time for StackGAN B is longer than

StackGAN A.

4.2. Convergence

For both StackGAN A and StackGAN B, we run

100,000 iterations. The convergence plots from

tensorboard are shown as follows. Fig.4 displays the

StackGAN A convergence plot for Gstar and Dstar.

Fig.5 shows the StackGAN B convergence plot for

Gstar and Dstar. As we observe, both models become

stable after 100,000 iterations. There is no big

difference in the convergence speed.

 Fig.4. Convergence plot for StackGAN A

Fig.5. Convergence plot for StackGAN B

4.3. Evaluation

4.3.1 Qualitative evaluation

The Fig.6 displays both the original photos and

cartoon expression from StackGAN A and B. The

expressions from left to right are anger, disgust, fear,

happiness, sadness and surprise. As seen in Fig. 6,

StackGAN A and B both properly maintain the

personal identity and facial features. But it seems that

StackGAN B generates more natural-looking

expressions and cartoon styles. We believe that the

superiority of StackGAN B in the image quality is due

to that style transfer has implicit feature augmentation

effect. CartoonGAN produce high-quality cartoon

style photos by reproducing the necessary clearly

edges and smooth shading while retaining the content

of the original photo. Therefore, in StackGAN B,

StarGAN can take advantage of the feature

augmentation effect by CartoonGAN and generates

better expression photos compared with in StackGAN

A. However, we do notice that our StackGANs are

unable to generate very differentiating disgust, fear

and surprise expressions. This is mostly caused by the

fact that these expressions in the training dataset itself

is not differentiating.

Original face photos

StackGAN A

StackGAN B

StackGAN A

StackGAN B

StackGAN A

StackGAN B

StackGAN A

StackGAN B

StackGAN A

StackGAN B

StackGAN A

StackGAN B

Fig.6. Sample results by StackGAN A and B

4.3.2 Quantitative evaluation

 For a quantitative evaluation, we conducted a

survey in which we ask people to classify the

expression of our output photos manually and then

score on the expression quality and cartoon quality.

To ensure we get the subjective opinion, we designed

two versions of questionnaire A and B with each

contains the 15 outputs from either StackGAN A or

StackGAN B generated for the same original face

photos. Moreover, we included only the anger,

happiness and sadness for the same reason we

mentioned in 4.2.1. The source of outputs is masked

and equally distributed in each questionnaire. The

links to questionnaires are in Appendix part. We

collected 40 response in total with 22 from

questionnaire A and 18 from questionnaire B.

 Table 2 shows the average scores on expression

quality and cartoon quality. We can see that

StackGAN B has higher scores on both expression

quality and cartoon quality and this is consistent with

our own observations. Table 3 shows the accuracy of

the expressions in our output photos. It shows that

except for sadness, StackGAN B has higher accuracy

on other expressions. On average, StackGAN B’s

expressions classification accuracy is 6% higher than

StackGAN A’s. Again, this is consistent with quality

scores and our own observations.

Table 2. Average Scores on Quality

Quality Scale (1-5) StackGAN A StackGAN B

Expression Quality 3.15 3.32

Cartoon Quality 3.06 3.25

Table 3. Accuracy of expressions

Accuracy anger happiness sadness Total

StackGAN A 72% 76% 89% 79%

StackGAN B 86% 84% 86% 85%

5. Discussions and Future Work

From the results and comparison of StackGAN A and
StackGAN B, we conclude that

(1) Almost no time difference in terms of training
each epoch for both StackGANs. However,
since the output frequency for the
intermediate photos prepared for next GAN
training is higher, the actual training time for
StackGAN B is slightly longer than
StackGAN A.

(2) No significant difference on the convergence
rate for both StackGANs.

(3) Switching the training sequence has some
impact on the final output photos. Our survey
assessing both quality and accuracy of the
outputs shows that people tends to prefer
StackGAN B a little more. We believe this
superiority is caused by the fact that style
transfer has implicit feature augmentation
effect.

During the training and analyzing results, we do
notice a few points that we would like to work on
given more time.

(1) The quality of training data is the key to the
generated output quality. Unfortunately, we
notice the image quality from RAF-DB is not
very clear since the dataset is prepared for
classification task not for GAN task. If we can
get clearer images, we are able to generate
better result.

(2) Running either StackGAN A or StackGAN B
requires at least a 16GB GPU. We believe
some steps in the architecture is not
necessary. If given more time, we would like
to optimize the architecture to make the
model able to run in a less memory-
consuming setting.

(3) The architecture of StarGAN and
CartoonGAN share similar layer structure.
We believe if we add some more layers, such
as Maxpool layer to preserve some high-level

features in the expression before we send it to
style transform, we can get better outputs.

Appendix

[1] Questionnaire links:
https://forms.gle/SkHSP2fkmTouQ8Co9 and
https://forms.gle/YQnm6gCQMJttPUih8.
[2] Github page:
https://github.com/XiaoyiLi-sf/CS230_StackedGAN
[3] Video page:
 https://www.youtube.com/watch?v=Z0xXroyExUQ

References

[1] Li, S and Deng, Wand Du, J. 20117. Reliable

crowdsourcing and deep locality-preserving learning

for expression recognition in the wild. In IEEE

Conference on Computer Vision and Pattern

Recognition (CVPR).

[2] Choi Y., Choi M., Kim M., Ha JW., Kim S., Choo J.

StarGAN: Unified Generative Adversarial Networks

for Multi-Domain Image-to-Image Translation. arXiv

preprint arXiv:1711.09020v3

[3] Chen Y., Lai YK., Liu YJ. 2018. CartoonGAN:

Generative Adversarial Networks for Photo

Cartoonization. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR).

https://forms.gle/SkHSP2fkmTouQ8Co9
https://forms.gle/YQnm6gCQMJttPUih8
https://github.com/XiaoyiLi-sf/CS230_StackedGAN
https://www.youtube.com/watch?v=Z0xXroyExUQ

	1. Introduction
	2.1. RAF-DB
	2.2. IIT-CFW
	3.1. Separate models
	3.2.1 Architecture

	4. Results
	4.1. Training time
	4.2. Convergence
	4.3. Evaluation

	5. Discussions and Future Work
	Appendix
	References

