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Abstract

Modern facial recognition systems rely on deep neural networks which are known to be susceptible to
adversarial attacks. We evaluate the robustness of a state-of-the-art facial recognition system, FaceNet,
under four modern attacks and two defenses. We find several surprising results — for instance, that
uninformed attackers are extremely ineffective against even the most basic defense — and conclude our
work with several recommendations for practitioners. We publish all code for this project on Github. F_-]

1 Introduction

Recent advances in facial recognition technology have revolutionized a plethora of applications, ranging from device
authentication (e.g. Apple’s Face ID) and e-commerce (e.g. Mastercard’s ‘selfie’ payment technology) to public safety (e.g.
police identifying criminals at large public events). And in the near future, facial recognition could be deployed in even
higher-stake situations, such as targeting on military rifles [1] and management of pain medication for patients [2].

Thus, the risks of attacks on face identification technology and the consequences of misidentification grow ever larger—and
so it is crucial to understand how brittle face identification currently is and how robust it can be made. These questions are
particularly relevant in the wake of recent research on adversarial examples that has shown the vulnerability of DNNs to
even small perturbations.

2 Related Work

Face recognition. Over the last ten years, error rates on face recognition systems have decreased by two orders of
magnitude [3} 4] and surpassed human-level performance for the first time [5]. This improvement was fueled by: deep CNN
architectures that eliminated the need for handcrafted feature extraction [6], rich labeled datasets of up to 100s of millions of
images [7]], and innovations in loss functions and training strategies. Perhaps the most common approach in modern face
recognition systems, exemplified by the FaceNet model [[7]] we attack in this paper, is to use a ResNet [8] architecture in
combination with a distance-based loss function, embedding face images in a Euclidean space, then reducing intra-variance
and increasing inter-variance therein [6]].

Adversarial attacks/defenses. Deep neural networks have been shown to be vulnerable to a variety of white-box [9}10]
and black-box attacks [[11} [12]] which can trigger misclassification even when modifying just a single pixel in a natural
image [[13l]. A number of mitigating defenses have been proposed, from adversarial training [[14] to attack detection [[15]]
to defensive distillation [16], but recent research suggests most if not all of these in fact can be defeated [[17]. Security
through obscurity has also been ruled out as an option as adversarial examples have demonstrated strong transferability
across different models and training sets [[18} [19]]. Our work transfers existing proposals for attacks and defenses to the
context of face recognition, which has received comparatively little attention in this domain; this contribution is valuable not
only because face recognition is a critical application in its own right but also because existing research has focused on
datasets like MNIST which are known to have peculiarities that challenge generalization of results [17].

3 Dataset

We evaluate our attacks and defenses on the Labeled Faces in the Wild (LFW) dataset [20], widely recognized as the de
facto face verification benchmark. The LFW dataset contains 13,233 images of 5,749 public figures, with 1,680 individuals
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represented by 2+ photos in the dataset. The LFW test set is a sequence of pairs of images which need to be classified
as being photos of the same person or photos of different people. Figure[I]shows examples of both types of pairs. This
face verification task is the basic building block of a face recognition system, which may compare a new face image with a
number of images in its database to authenticate or identify users. LFW images are aligned with a Multi-task Cascaded
Convolutional Network (MTCNN) [21]] and scaled to 160 x 160. 0-1 RGB scale is used.
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Figure 1: Sample LFW test pairs, to be classified as “same” (left) and “not same” (right)

4 Methods

The model we target with our attacks is a TensorFlow implementation of FaceNet [[7]], which gives a mapping from face
images to a 128-D embedding in a Euclidean space. This model uses the Inception-ResNet-v1 architecture [22] and is
pre-trained on the VGGFace2 dataset [23]], which contains more than 3 million face images of 9,000+ individuals. The
model achieves 99.65% accuracy on LFW.

To stage our attacks we use the Python package Foolbox [24], which contains implementations for many adver-
sarial attack techniques. As Foolbox expects a classifier which takes one input image we wrap our FaceNet model as shown
in Figure For each LFW test pair (f1, f2), we fix the second face image f> and compute its embedding xo. The adversary
then feeds perturbed versions of f; into our model and our “classifier” outputs probabilities that the pairs of images are of
the “same” class or of the “different” class. If the images were photos of the same person to begin with, the adversary’s goal
is to find perturbation A such that d(embedding(f; + A), x2) > threshold, i.e. such that FaceNet thinks the two faces
are of different people. This set-up follows [23]].
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Figure 2: Turning FaceNet into a classifier for Foolbox

In particular following we set P(same) =1—0.5- ﬁ if the distance d in the embedding space between two face

i ; : 0.5%(d—threshold) . .. . . .
images is < threshold and set it to 0.5 — """ otherwise. This is an arbitrarily chosen mapping from

distances to probabilities and it would be possible to instead learn this by appending and training further layers to FaceNet.

We focus on four popular adversarial attack techniques:

o Additive Uniform Noise Attack (Uniform): i.i.d. Uniform noise is added to the image; the standard deviation of the
noise is increased until misclassification is achieved;

e Additive Gaussian Noise Attack (Gaussian): same as Uniform but with i.i.d. Gaussian noise;

e Fast Gradient Sign Method (FGSM) [9]: find smallest € such that f; + A(e) is misclassified, where A = ¢ -
sign(V s L(f1,4o)) and £ is the true classification label. i.e. FGSM perturbs the image in the gradient direction,
increasing loss and triggering misclassification;

e Deep Fool [10]: iteratively perturb f; in the direction of the gradient of the loss function, generating a sequence of
perturbations €g, €1, . . . that terminates once the decision boundary is crossed, and yields the final perturbation
€ =y . €. Deep Fool is roughly an iterative extension of FGSM and while it is more computationally expensive, it
produces more effective adversarial examples and with much smaller perturbations.



Succ%, ||A]] < oo | Succ, ||Al] <5 | Succ, ||A]] <1 Average ||A||
Anon. | Impers. Anon. | Impers. | Anon. Impers. | Anon. | Impers.
FGSM 100% | 79.17% 100% | 75% 50% 16.67% | 1.23 2.41
DeepFool | 100% | 100% 100% | 100% 92.31% | 70.83 % | 0.50 | 0.90
Uniform | 100% | 0% 7.69% | 0% 3.84% | 0% 3329 | -
Gaussian | 100% | 4.17% 7.69% | 0% 3.84% | 0% 3279 | 1291
Table 1: Success rates of attacks with constrained perturbation size ||A||, and average perturbation size ||A|| of successful
attacks. Performance segmented into anonymization/impersonation tasks.

In addition to evaluating these attacks on an undefended face recognition system, we also analyze their success against two
defense mechanisms:

e Low-pass filter: input images to the system are first blurred with a 3x3 mean filter, which averages each pixel value
with itself and the immediate surrounding pixels.

e Deep image restoration: input images are first passed through a Noise2Clean [26] network pretrained for Gaussian
noise removal on 50K perturbed ImageNet examples; Noise2Clean is a convolutional auto-encoder network which
uses the Red30 [27]] architecture with symmetric skip connections.

(a) (b)

Figure 3: (a) attacked with Gaussian noise (b), corrected with a mean filter (c) and Noise2Clean (d).

(d

Figure 3] shows both defenses applied to an attacked image for a visual comparison of their corrective power. Following
(28, we analyze the interaction of these attacks and defenses under two threat models:

e Zero Knowledge: the attacker has no knowledge that a defense mechanism is being used. Adversarial examples are
constructed against the base facial recognition system and then tested against the protected system.

e Perfect Knowledge: the attacker has complete knowledge of the complete network architecture/parameters, including
those of any defense layers. Adversarial examples are constructed & run against the protected system.

5 Results

Since adversarial attacks can be time-consuming to run it is impractical to generate an entire adversarial dataset from
LFW test pairs. Instead, we randomly chose 50 LFW test pairs and ran each attack on these. Similar to [235] we report the
performance of the attacks on two conceptually distinct tasks:

1. Anonymization. If (f1, f2) are photos of the same person, the attacker tries to perturb f; such that f; = f; + A and
fo are regarded as being faces of different people. An example of a real-world anonymization attack would be a
person of interest trying to mask their presence from law enforcement face recognition software.

2. Impersonation. If (f1, f2) are photos of different people, the attacker tries to perturb f; such that f] = f; + A and
fo are regarded as being faces of the same person. An example of a real-world impersonation attack would be an
individual trying to gain access to someone else’s device which uses face authentication.

Table [T] gives the success rate (percentage of test pairs for which a misclassification was achieved) for the 4 different
attacks against the undefended FaceNet system. It also shows how the success rate changes as the max perturbation size is
constrained, and the average perturbation size (L2-norm of A) for successful misclassification attacks with no such size
constraint. Table 2] gives the success rate for different attacks in the presence of the simple mean filter defense, in both
zero- and perfect-knowledge settings. Zero knowledge results for Noise2Clean defense are similar and are omitted for
space, although interestingly, Noise2Clean works better for defending against the black-box Additive Gaussian and Uniform
attacks which have substantially more noise but is not as competitive at eliminating the white-box FGSM and DeepFool
attacks. Unresolvable compatibility issues prevented perfect knowledge experimentation for Noise2Clean.

To additionally investigate the transferability and generalizability of the attacks produced on our FaceNet model we fed the
attack images to Amazon Rekognition, a commercial state-of-the-art deep learning system. Given a pair (f1, f2) of images



Zero Knowledge Attacks Perfect Knowledge Attacks
Succ%, [JA]] < oo | Average [[Aflger | Succ%, [[A]] < oo | Average [[A]]
Anon. Impers. | Anon. | Impers. | Anon. | Impers. Anon. | Impers.
FGSM 7.69% 0% 2.20 2.38 100% | 79.17% 1.40 2.48
DeepFool | 7.69% 0% 2.05 1.88 100% | 100% 0.58 1.05
Uniform | 7.69% 0% 11.50 | - 100% | 0% 4145 | -
Gaussian | 11.53% | 0% 11.34 | 4.38 100% | 4.17% 41.58 | 52.52

Table 2: Evaluation of mean filter defense against zero- and perfect-knowledge attacks with unconstrained perturbation
size ||Al]. || Al]qef refers to the norm of the difference between the original image and the attacked image after applying the
defense correction to the latter.

No Preprocessing Mean Filter Noise2Clean
Anon. | Impers. | Anon. | Impers. | Anon. | Impers.
No Attack | 98.60 | 87.74 98.40 | 87.71 98.62 | 87.59
FGSM 97.46 | 78.51 97.06 | 79.74 97.38 | 78.86
DeepFool | 96.68 | 78.65 96.65 | 79.11 96.71 | 78.77
Uniform 58.12 | - 92.16 | - 94.64 | -
Gaussian | 61.97 | 90.75 92.14 | 92.25 94.57 | 91.88
Table 3: Transferability of attacks/defenses to Amazon Rekognition. The numbers are a proxy for Rekognition’s confidence
in the correct classification (lower scores = more successful attacks).

this web service outputs a similarity score s between faces in the two images. If f1 and f> are the same person we use s as a
measurement for Rekognition’s confidence in the correct prediction (‘same’); if they are of different people we use 1 — s
instead. Table[3gives the average confidence score of Rekognition on the unperturbed test set, the attacked test set, and the
attacked test set corrected with the mean filter and Noise2Clean defenses before being fed to Rekognition.

6 Discussion

Impersonation is harder than anonymization. As evidenced in Table[T] anonymization attacks are always able to succeed for
unconstrained perturbation sizes; by contrast impersonation has lower success rates and requires higher perturbations (~2x
greater ||A|| for FGSM/DeepFool). This disparity makes sense: for anonymization, the attacker simply has to make the
system classify an image as anyone other than its original identity, whereas for impersonation the attacker has to convince
the system that an image is of a particular person. The specificity of the impersonation target accounts for the difficulty.

@) f2 (b) original, f1 (¢) Uniform (d) Gaussian (e) FGSM (f) DeepFool

Figure 4: (a) is fo, the fixed image and (b) is f1, the image to attack in a LFW test pair; the rest are the perturbed images f]
produced by the four attacks, all of which successfully cause the classifier into outputting ‘not same’. The top row images
show the delta between the perturbed and original images (scaled to be visible).

White-box attacks are more powerful than black-box. As expected, the gradient-based white-box attacks are much more
effective than their additive noise black-box counterparts, with order-of-magnitude smaller perturbation sizes required for a
misclassification on anonymization tasks. This can be seen in Figure 4} changes resulting from successful white-box attacks
are imperceptible. For impersonation tasks black-box attacks are essentially useless; intuitively it is plausible to add enough
uniform noise that a face no longer belongs to its original identity but it is unrealistic to expect to be able to add enough
uniform random noise to suddenly match a precise target identity.

Even simple defenses eliminate attacks in zero knowledge settings. As Table [2]demonstrates, even a mean filter cripples
attacks if the adversary is unaware it is being applied; impersonation attacks have 0% success across the board and even
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Figure 5: Distribution of the L2-norm of the attack perturbation A, before and after applying the mean filter defense.
Attacker has full knowledge.

anonymization attacks are essentially useless. Comparing ||A[|ger in Table 2]to [|Al| in Table[1} we see that the mean filter
greatly reduces the distance between the perturbed and original images for black-box attacks.

Perfect knowledge of defenses renders them ineffective. ~As Table [2] shows, when the attacker can generate adversarial
examples against the defended network, the success rates are almost the same as against the undefended network in Table
However, as Figure [5|illustrates, attacks against the defended network are understandably larger (17% higher ||A|| for
white-box and 27% higher ||A|| for black-box attacks) and therefore also take iterative attacks longer to generate.

Adversarial examples are moderately transferable. As Table [3|demonstrates, all attacks lower the confidence of correct
classification in Amazon Rekognition. White-box impersonation attacks and black-box anonymization attacks seem to
transfer well while white-box anonymization attacks do not, although it is unknown if this is due to any hidden preprocessing
by Rekognition. In general, we expect white-box attacks to transfer less well because the perturbation sizes are small and
tuned to gradients resulting from our specific network architecture and parameters. Applying defenses significantly improves
performance against black-box noise attacks, suggesting universal defenses can be developed against such attacks; it is
interesting to note that neither defense mitigates white-box impersonation attacks in contrast to our results in Table

7 Conclusion & Future Work

While some of the results we found were expected, such as white-box attacks being more effective than black-box attacks,
and impersonation being more difficult than anonymization, other results were truly surprising to us and illustrate some of
the peculiar properties of deep neural network facial recognition systems.

Because even basic defenses eliminate zero-knowledge attacks and raise the computational cost of attacks in a perfect
knowledge setting (with no degradation in accuracy on images from honest users), we recommend that facial recognition
systems use at least basic defenses such as a low-pass filter. This means, however, that a rational attacker should assume
that defenses are in play and attacks will therefore never be zero knowledge. More work is needed, then, to analyze attacks
in a partial knowledge setting, where attackers are aware that defenses exist but do not know what those defenses are; in
particular the question is whether attacks against one defense can transfer successfully to a model using another defense.

While perfect knowledge attacks are extremely effective against the low-pass filter, one major area for future work is to
evaluate whether more sophisticated defenses such as Noise2Clean are effective against perfect knowledge attackers. We
hypothesize that at least white-box attacks can still break through such defenses. Another direction is to investigate an
ensemble of defenses from which one or more is selected randomly at runtime; this may provide probabilistic protection.

For a defender, the success of perfect knowledge attacks clearly suggests a need to reduce the attacker’s knowledge as much
as possible, e.g. by carefully securing the network architecture & weights or the defense implementations. We therefore
suggest defenders avoid using popular pre-trained models simply out-of-the-box. Although our work demonstrates there
is indeed some transferability of adversarial examples in facial recognition, transferred examples (particularly white-box
attacks) still have significantly lower success rates on the new facial recognition system.

There are many further ideas for future work, some of which we highlight here. Can adversarial attacks be prevented while
maintaining verification accuracy by making the embedding distance threshold for a ‘same’ classification stricter? Rather
than correcting adversarial images, is it easier and more reliable to instead detect attacks, e.g. by a SafetyNet? Finally, it
may be interesting to study a “group impersonation” task that falls between the “anonymization” and “impersonation” tasks
studied in this paper; here, the attacker tries fooling the network into classifying the input as any one of [V identities. Which
defenses work best for different group impersonation attacks?



8 Contributions

Luca did the initial work setting up the FaceNet model and integrating with Foolbox, as well as the zero knowledge attack
and transferability experiments. Leo did the initial work setting up experiments on AWS, as well as the perfect knowledge
attack experiments and integration with Noise2Clean. Both authors contributed to the writing of the report and presentation.

The authors thank Hao Sheng for mentoring this project and Amazon Web Services for sponsoring CS230 by providing
GPU credits.
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