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Introduction

In 2007, Freddie Linksky fooled the world into paying large numbers for his abstract paint-
ings – people didn’t realize they were a two-year-old’s ketchup art [9]. Distinguishing between
professional and amateur artwork is vital when evaluating its commercial value. In 2010, psy-
chologists Hawley-Dolan and Winner found that even untrained adults can distinguish between
professionals’ and children’s abstract works [4]. Can a machine learn to do the same?

CNNs generally perform well on many image classification tasks that require distinguishing
between the objects represented by images. The task of classifying professional and amateur
abstract artwork may be challenging for humans, and research thus far has called into question
the balance of content-based and style-based information necessary for models to perform well
on such tasks [6][5][7]. In this paper, I demonstrate that by applying deep learning techniques
to address issues of high variance, even standard CNN architectures are able to successfully
distinguish between most professional and amateur artwork.

Figure 1: deviantArt images Figure 2: MART images

Data

deviantArt

DeviantArt, the world’s largest online community for amateur and professional artists and art
enthusiasts, features millions of artworks and has over 44 million registered members [2]. [8]
selected 500 amateur artworks by 406 different authors from deviantArt by filtering to abstract
art, manually removing paintings with recognizable objects, and selecting a range of most to
least favored paintings. I manually downloaded each of these paintings from their links in [1]
to get a dataset of 440 artworks (60 unavailable). I labeled these images 0, corresponding to
“amateur.”
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Table 1: Model Architectures
Baseline Model Shallow Model

Layer Output Layer Output

Input 3, 512, 512 Input 3, 512, 512
Conv1 (f=3, p=1, s=1) * 8 8, 512, 512 Conv1 (f=3, p=1, s=1) * 8 8, 512, 512
ReLU 8, 512, 512 ReLU 8, 512, 512
MaxPool2D(2,2) 8, 256, 256 MaxPool2D(2,2) 8, 256, 256
Conv2 (f=3, p=1, s=1) * 16 16, 256, 256 Conv2 (f=3, p=1, s=1) * 8 8, 256, 256
ReLU 16, 256, 256 ReLU 8, 256, 256
MaxPool2D(2,2) 16, 128, 128 MaxPool2D(2,2) 8, 128, 128
Conv3 (f=3, p=1, s=1) * 32 32, 128, 128 Conv3 (f=3, p=1, s=1) * 16 16, 128, 128
ReLU 32, 128, 128 ReLU 16, 128, 128
MaxPool2D(2,2) 32, 64, 64 MaxPool2D(2,2) 16, 64, 64
Conv4 (f=3, p=1, s=1) * 32 64, 64, 64 Conv4 (f=3, p=1, s=1) * 16 16, 64, 64
ReLU 64, 64, 64 ReLU 16, 64, 64
MaxPool2D(2,2) 64, 32, 32 MaxPool2D(2,2) 16, 32, 32
FC1 256 FC1 256
ReLU 256 ReLU 256
FC2 84 FC2 84
ReLU 84 ReLU 84
Dropout 84 Dropout 84
Softmax 2 Softmax 2

MART

The MART collection contains over 20,000 artworks from 1913 to 2008 by Italian, European,
and American artists [3]. With an art historian, Sartori et al. selected 500 images [1] of abstract
paintings from this collection. I labeled these images 1, corresponding to “professional.”

Preprocessing & Augmentation

First, I resized the images to be the same dimensions (512 × 512 pixels) using bicubic interpo-
lation. Then, I mean-centered and normalized each of the images between 0 and 1 inclusive. I
then store each of the images as a 512 × 512 × 3 dimensional matrix and finally randomly split
the 940 images into train/dev/test sets using a 60/20/20 split.

In half of my experiments, I use this data to train and evaluate my models. In the latter
half of my experiments, I instead train my models with more data by performing vertical flips
on the preprocessed images. Specifically, I first vertically flip all the preprocessed images to
get a total of 1880 images, double of what I originally had. Then, I randomly split these
images into train/dev/test sets using a 60/20/20 split. When training, I train on this new set
of training data (containing 1128 images). However, I keep my dev and test sets the same as
before (containing 188 images non-augmented images each) for evaluation.

Method

Note: All code for my models is available at my Github repo sharmant/abstract-art-classification.
All experimental results run on Google Colab are displayed in the Python3 notebook at
https://colab.research.google.com/drive/1B4rgRkUycxYdySqgZUfcNjnq6afr0FeA.

The architectures of models are outlined in Table 1. My baseline VanillaCNN consists of
4 CONV+ReLU+MaxPool layers followed by dropout and 2 fully connected layers, and finally a
softmax layer that outputs probabilities of each class. I divide the non-data augmented training
data into 8 equally sized batches and the data-augmented training data into 16 equally sized
batches when training. I use an Adam optimizer with cross entropy loss to train the model.

The ShallowCNN model is a “shallow” version of the VanillaCNN in that the CONV layers
have fewer filters, in an attempt to simplify the model overall. When I train these two models
on the larger data augmented (DA) training set, I call these models VanillaCNN-DA and
ShallowCNN-DA.
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Table 2: VanillaCNN Training and Dev Accuracy (Tuning Dropout Probability)

Dropout Prob Learning Rate Epochs Train Acc (%) Dev Acc (%)

0.1 1e-4 50 97.16 73.40
0.2 1e-4 50 92.91 73.94
0.3 1e-4 50 99.29 69.68
0.4 1e-4 50 97.34 73.94
0.5 1e-4 50 98.94 69.68
0.6 1e-4 50 93.97 74.47
0.7 1e-4 50 99.11 75.00
0.8 1e-4 50 99.11 70.74

Table 3: ShallowCNN Model Training and Dev Accuracy (Tuning Dropout Probability)

Dropout Prob Learning Rate Epochs Train Acc (%) Dev Acc (%)

0.1 1e-4 50 89.72 73.94
0.2 1e-4 50 84.57 76.60
0.3 1e-4 50 87.77 70.74
0.4 1e-4 50 84.57 72.87
0.5 1e-4 50 82.62 71.80

Table 4: VanillaCNN-DA Model Training and Dev Accuracy (Tuning Dropout Probability)

Dropout Prob Learning Rate Epochs Train Acc (%) Dev Acc (%)

0.1 1e-4 100 99.56 93.09
0.2 1e-4 100 99.56 87.77
0.3 1e-4 100 99.56 90.96
0.4 1e-4 100 99.29 90.96
0.5 1e-4 100 99.02 87.77

Table 5: ShallowCNN-DA Model Training and Dev Accuracy (Tuning Dropout Probability)

Dropout Prob Learning Rate Epochs Train Acc (%) Dev Acc (%)

0.1 1e-4 100 96.28 88.30
0.2 1e-4 100 99.65 90.96
0.3 1e-4 100 98.76 91.49
0.4 1e-4 100 99.65 92.02
0.5 1e-4 100 99.02 89.36

Table 6: Final Tuned Model Train and Test Accuracies
Model Learning Rate Dropout Epochs Train Acc (%) Test Acc (%)

VanillaCNN (Baseline) 1e-4 0.7 50 99.11 77.13
ShallowCNN 1e-4 0.2 50 84.57 78.19
VanillaCNN-DA 1e-4 0.1 100 99.56 93.09
ShallowCNN-DA 1e-4 0.4 100 99.65 92.55
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Figure 3: VanillaCNN (Baseline) Figure 4: VanillaCNN-DA

Figure 5: All Incorrectly Classified Images for VanillaCNN-DA and ShallowCNN-DA

Experiments and Results

More Epochs & Tuned Learning Rate

I ran each of my experiments on Google Colab using 1 NVIDIA K80 GPU. First, I increased
the number of training epochs when training VanillaCNN to 50 (from 20 in the milestone) and
tuned the learning rate (trying 1e-5, 3e-5, 1e-4, 3e-5, 1e-3) to find the optimal value of 1e-4.
This drastically improved my results, achieving train and dev accuracies of 92.91% and 73.94%,
respectively. Although this is a major improvement from my results from the milestone (which
was comparable to a random classifier), the VanillaCNN still suffered from high variance. This
is evident from Figure 3, as the gap between the train and dev accuracy is significant.

Tuned Dropout Probability & ShallowCNN

To address the issue of high variance, I tuned the dropout probability from its value of 0.2 and
achieved train and dev accuracies of 99.11% and 75.00% respectively with a dropout probability
of 0.7, as shown in Table 2. Then, I simplified the VanillaCNN model by decreasing the number
of filters at most of the convolutional layers, resulting in the ShallowCNN model. After tuning
the dropout probability of the ShallowCNN (see Table 3), I achieved train and dev accuracies
of 84.57% and 76.60%, respectively.

4



Data Augmentation

Although tuning the dropout probability and simplifying the VanillaCNN increased my dev
accuracy, the model still seemed to suffer from high variance. Therefore, I performed data
augmentation by vertically flipping the images as detailed in the Preprocessing & Augmentation
section. This doubled my training data while maintaining my original dev and test datasets.

I then trained the VanillaCNN and ShallowCNN on this training dataset and tuned the
dropout probability for both models (Tables 4 and 5). VanillaCNN-DA achieved train and
dev accuracies of 99.56% and 93.09%, respectively, while ShallowCNN-DA achieved train and
dev accuracies of 99.65% and 92.02%, respectively. As the train and dev accuracy curves of
VanillaCNN-DA demonstrate (Figure 4), augmenting the image data largely resolved the issue
of high variance previously seen in the original VanillaCNN.

Table 6 displays the final train and test accuracies achieved by each of the 4 models.
VanillaCNN-DA performs best, achieving a test accuracy of 93.09% (identical to its dev
accuracy), followed by ShallowCNN-DA, which achieves a test accuracy of 92.55%.

Discussion and Analysis

Each of the experiments and their corresponding train, dev, and test performances demonstrate
that high variance was the main issue my baseline suffered from. Although tuning hyperpa-
rameters such as the dropout probability and simplifying the model architecture alleviated this
issue, augmenting the data produced the most prominent improvement in accuracy. Vertically
flipping abstract artwork may not seem to make much of a difference to the art, especially when
compared to genres such as realism, but doing so was key to achieving impressive performance
on this classification task.

To better understand how the models perform, I qualitatively evaluate their misclassified
examples. Figure 5 displays all images misclassified by VanillaCNN-DA and ShallowCNN-DA.
Notably, the misclassified images for both models are evenly split between the two classes, so it
seems that the models perform almost equally well when classifying amateur and professional
abstract artworks.

The misclassified amateur artworks seem to consist mostly of highly complex and colorful
art, along with some simpler monochrome pieces. Professional abstract art may often consist
of pieces in either extreme, and these may be difficult to distinguish based on skill. On the
other hand, the misclassified professional artworks seem to be more geometric and often consist
of 2 main colors. Geometric shapes (such as the the solidly colored squares in the artwork
in the bottom right corner) and larger bodies of color (such as the red/lavender and the olive
green/orange pieces) may be simpler for amateur artists to create compared to more complex
artworks. Therefore, the models may have learned to classify such pieces as amateur ones.

Conclusion & Next Steps

Originally, because the problem of classifying amateur and professional abstract art may not
simply be a content-based task, my goal in implementing a vanilla CNN for my baseline model
was to understand how standard CNNs perform on this unique problem. However, after iden-
tifying high variance as the main issue and performing deep learning techniques to alleviate
this issue, I was able to achieve an impressive test accuracy of 93.09% with VanillaCNN-DA.
Therefore, CNNs are actually effective ways to tackle this task that humans have demonstrated
difficulty with. Moving forward, I would like to explore more advanced models that may over-
come the limitations my current models have when classifying specific types of abstract art.
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