Authio: Neural Network Authentication using Biometric
Keystroke Dynamics

Alex Langshur (adl@stanford.edu)
Harry Mellsop (hmellsop@stanford.edu)
https://github.com/Junior-House/authio
CS230 — Deep Learning
Stanford University

Abstract

In 2017, over three billion passwords were stolen [8]], compromising enormous quantities of sensitive
data. In order to augment the security flaws presented by traditional password-based security systems,
we applied a deep neural network architecture to leverage the subtle biometric variation in the
typing patterns between individuals. We sought to determine the authenticity of a password attempt
based on both the accuracy of the password entered, and on the manner in which the user typed the
password. Our results indicate a high level of performance, including (crucially) a 0% false-positive
rate, 98% overall accuracy, and a 3% false-negative rate, achieved through a 7-layer neural network
architecture.

1 Introduction

While passwords have formed the backbone of day-to-day security systems for decades, in many respects they are
extremely flawed. An average of 95 passwords are stolen per second globally, causing the loss of valuable data and
billions of dollars in damages yearly [2] [S].

To augment this flawed system, we looked at other forms of security that would not require further investment in
hardware. Through research, we ascertained that the typing habits of individuals vary subtly across the population,
and as such could be used to discern people by the *biometric signature’ that their typing represents. With an adequate
model, we could therefore determine the validity of a purported 'real’ user by the manner in which they type their
password.

To be explicit, we propose a system where a user types their password into the machine once. The machine will identify
whether or not the user is who they say they are, with a high degree of precision and accuracy. We will seek to minimise,
in particular, the false-positive rate, as this would correspond to a false user being allowed into the system accidentally.
In order to train the system, the user would have to enter their password more than once.

2 Related Work

In order to inspire the structure of our neural network approach, we conducted a review of existing research in the
field. According to our research, Forsen et al. were the first team to investigate the feasibility of differentiating users
by their typing practices [4]. Moskovitch et al. further formalised the problem statement in their 2009 paper to the
IEEE International Conference on Intelligence and Security Informatics [[10]. Their paper was an effort to introduce
biometric measures that relied on existing hardware. They identified that the factors of keyboard fight time, dwell time,
frequency of typing errors and use of particular control keys were the most indicative of typing habits. As such, this
guided our selection of typing features to examine.

With respect to specific models, Sungzoon Cho and colleagues were able to achieve a 0.0% false acceptance rate and a
1% false recognition rate using a multilayer perceptron neural network [3]]. These results were replicated by Daw-Tung
Lin, who found a 0.0% false acceptance rate and a 1.1% false rejection rate. This was therefore our target to beat.

In practical applications, biometric keystroke identification has been employed by Coursera — one of the largest online
course vendors globally. They describe their “Signature Track® system in a 2013 paper, in which students type a short
phrase to authenticate their identity before submitting an online assessment [1]] [9]. However, Coursera’s product was
discontinued in 2017, allegedly due to inaccuracies in prediction and reports about the procedure being inconvenient.

Therefore, it is clear that the latent structure in the data exists — in a controlled setting, it has been demonstrated that
with a sufficiently sophisticated model users can be identified almost perfectly. However, in practice, implementations
have proven to be more challenging. We hypothesise that when constrained to only password entry on a particular
machine, and with the correct model, we will be able to alleviate these practical problems.

3 Dataset and Features

3.1 Data Structure

Based on our observations from the work of Moskovitch et al, raw keystroke data will be parameterised by a sequence
of key events and durations. For a sequence of n keystrokes, we collect three data points for each pair of adjacent
keys k and k + 1 in a sequence. These are: the ‘Hold’ time, from when key k is pressed to when key k is released;
the ‘Up-Down’ time, from when key k is released to when key k + 1 is pressed; and the ‘Down-Down’ time, from
when key k is pressed to when key k + 1 is pressed. This scheme was inspired by the work of Killourhy, Maxion, and
Moskovitch to correspond with their dataset [10] [7].

For a trivial case where our password is matt, the data is represented in code as the following. Here, ¢;; denotes the
value of data point j of character index ¢ for the password example s = "matt":

Data(s) = {(m, None, H) =111, (a, m, DD) =119, (Cl, m, UD) =113,..., (t, t, UD) = t43}

If there are no repeated sequences of 2 characters in the string, we find that the size of the data for one attempt will be
|Data(3) | = 3-1len(s). For passwords that repeat features, such as "mattt", the duplicate features will map to the mean
of all matching keystoke pattern times. In these cases, |Data(s)| < 3 - Len(s), though for reasonably non-repetitive
passwords we found that this was not an issue. In our case, the password we used for training and testing (. tie5Roanl)
had no repeated sequences. We developed this method of data capture during our previous logistic regression based
attempt at solving this problem.

3.2 Data Collection Preprocessing

We made use of the CMU Keystroke Dynamics Benchmark Dataset, which contains password attempts from 51 users,
each of whom typed the password .tie5Roanl 400 times. This data is specific to a singular password and key sequence
(e.g. the participants had to type the exactly correct keystrokes or the sample would be rejected).

Moreover, we collected data on our own typing habits. Our own personal typing data has been uploaded to the Github
repository if it is of interest. We developed a data-gathering system designed to identify and extract data in the same
format as that utilised by the CMU Keystroke Dynamics Benchmark Dataset [6]. This piece of software can be found
in the collection directory of the Github repository, and heavily leverages functionality from the pynput Python
library.

3.3 Data Usage Strategy

The use of this dataset in our research follows a two-step strategy. In the first step, we will select a single user in the
CMU dataset as the "valid user” (i.e. the user that should be accepted by the authentication system). We will train this
user’s 400 valid password repetitions against the 50 other users, whose password repetitions will all be dubbed "invalid"
(i.e. biometric keystroke data that should be rejected by the authentication system). This approach will allow us to
quickly and iteratively derive an accurate model that will accept the valid data and reject the invalid data. Then, we will
perform this for each user in the database, to analyse the accuracy that is achieved for each individual user. This will
allow us to amalgamate the results and extrapolate a notion of the model’s performance in general.

In the second step, we will target one of our own collections of typing habit data as the ’valid’ data, while using the
entirety of the CMU Keystroke Dynamics Benchmark Dataset as *invalid’ data. By using 51 ’invalid’ users with over
20,000 password repetitions, our goal is to approximate all the general typing subtleties that keyboard-users exhibit
(clearly, this approximation would be far more powerful with even more data) and explicitly distinguish this general
class of habits from our own combinatorial profile of typing habits.

4 Methods

4.1 Baseline Model

As a baseline, we applied an Adam-optimised logistic regression model to this classification problem, which leveraged
inference on a high-dimensional hyper-ellipsoid decision boundary that we attempted to construct artificially in our
selection of input features. Our results were positive, indicating a sub-20% false-positive rate and 60% overall accuracy.
We postulated that with a refined model we could perform better — we believe that this classification problem would
benefit strongly from an organically-imposed (self-learned) hyper-ellipsoid decision boundary, through a neural network,
rather than through inorganically targeted features.

4.2 Architecture Development

We initially began by exploring exploring a variety of neural network architectures through tuning hyperparameters
such as the number of layers, as well as the the number of units per layer. In this stage, the goal was to lower the training
set bias as much as possible. One interesting challenge here is that it is very difficult to conceptualise oracle-level
performance on this task given that it is not a task humans can perform. As such, we had no ’target’ accuracy that we
were pursuing — we were only hoping to observe the lowest error rates possible. Through this unguided process, the
following model, which uses 13,010 trainable parameters, was derived without a tangible evaluation target:

Layer Type Units Parameters
Input Layer 31 0
Fully-connected Layer 64 2048
Fully-connected Layer 64 4160
Fully-connected Layer 64 4160
Fully-connected Layer 32 2080
Fully-connected Layer 16 528
Output Layer 2 34

This first attempt at an improved model set the initial bar high, with an accuracy of approximately 98%, a recall of
96%, and perfect precision. Despite results that reflect a highly effective classification model, we wanted to reduce the
likelihood that a real user would be rejected erroneously, while maintaining perfect precision. As such, we continued
tuning and building out the architecture above, and arrived at the following model structure, which uses 68,914 trainable
parameters and 416 non-trainable parameters:

Layer Type Units Parameters
Input Layer 31 0
Fully-connected Layer 256 8192
Fully-connected Layer 128 32896
Batch Normalisation 128 512
Fully-connected Layer 128 16512
Fully-connected Layer 64 8256
Batch Normalisation 64 256
Fully-connected Layer 32 2080
Fully-connected Layer 16 528
Batch Normalisation 16 64
Fully-connected 2 34

4.3 Regularisation

After completing our initial neural network model, we noticed a problematic amount of variance in the trained results —
a significant mismatch between training and validation set accuracy. To fix this, we employed several regularisation
techniques, of which two provided successful regularisation effects without sacrificing bias. To start this process,
we added dropout layers after every fully-connected layer (other than the output layer). We initially set the dropout
probability parameter to 0.2 for each dropout unit and achieved a next-to-zero variance value.

As a means of both regularisation, speeding up training, and improving overall classification accuracy, recall, and
precision, we added batch normalisation layers after every other fully-connected layer. This added a total of 960
additional trainable parameters to the model and significantly lowered model bias. Moreover, we found that the large
dropout probabilities that we were using, on the order of magnitude of 10~!, were not conducive to effective training

when coupled with batch normalisation. To fix this problem, we removed half of the dropout layers and brought the
probabilities of the remaining half down to 0.01 — this provided the best evaluation outcome, while minimising both
bias and variance.

The result of this study in tweaking regularisation parameters was a final model with alternating dropout and batch
normalisation layers. Adjacent dropout and batch normalisation layers proved to add too much bias, and choosing a
single regularisation technique over the other didn’t reduce variance enough in the larger network (in actuality, dropout
did reduce variance enough but required large dropout probabilities that exploded the model bias). The combination and
alternating pattern of these two regularisation techniques provide the complete suite of regularisation benefits without
most of their drawbacks.

4.4 Training
As a choice of optimiser for training the model, we employed the standard Adam Optimisation algorithm on mini-

batches of size 48, with a learning rate of & = 0.001 and the standard values for 5; and (5. This optimisation algorithm
provided better results than vanilla mini-batch, momentum-based, and RMSProp-driven gradient descent.

model accuracy

10009 training

validation -
0.9751 /\/\

0.950 4

>
/\//\/\ e

0.925

0.900 1

accuracy

0.8751

0.850 1

0.825

0 5 10 115 20 25} 30
epoch

We allow the model to train for a maximum of 50 epochs. However, we instituted an early-stopping callback on the
validation set accuracy with a patience setting of six. The training process usually trains for around 25-30 epochs before
stopping.

5 Final Results

Our final model performed extremely well on the dataset. Firstly, when testing over the CMU dataset, we observed the
following results for the *average’ user tested (out of 51 independent tests of the same size with different ’valid’ users).

Results on CMU Data Only
True Positives 320/322
True Negatives ~ 318/318
False Positives 0/318

False Negatives 2/322

Accuracy 0.996875

Recall 0.993789
Precision 1.0
F1 Score 0.99688

Clearly, we have significantly outperformed our baseline here. Moreover, note that, in relation to the field of predictive
authentication, the overall performance of the model can be considered overwhelmingly successful and is most definitely
up to the critical task of classifying valid/invalid users. Crucially, the false-positive rate is 0% — this is imperative to
ensure that no adversaries are accidentally granted access to our system. This is additionally reflected in the perfect
precision: whenever the model predicts positively (grants user access), it does so correctly (this is far more important
than general accuracy or recall). Moreover, the system made an average of two false-negatives out of the 322 positive
examples it was shown. This is akin to the system rejecting a real user 0.6% of the time (meaning it may re-prompt for
another password attempt).

Moreover, when we analysed the model on our own user gathered data (which is treated as valid user data), in addition
to the CMU dataset (which is treated in its entirety as invalid user data), we observed very similar results.

Results on Union of Datasets
True Positives 315/322

True Negatives 318/318

False Positives 0/318

False Negatives 7/322
Accuracy 0.9890625

Recall 0.978261
Precision 1.0
F1 Score 0.983632

The slight decrease in performance is understandable given that our data will be sampled, naturally, from a slightly differ-
ent distribution to that of the CMU dataset (given different keyboards, slightly different measuring software/equipment,
etc). Crucially, however, we note that we retain our 0% false-positive rate.

6 Discussion & Further Work

We note that our model outperformed that of Sungzoon Cho et al., matching the 0% false-acceptance rate (which, again,
is critical in predictive authentication algorithms) but also reducing the false-rejection rate to far below 1%. As such,
our DNN model is a confident step forward in the advancement of predictive biometric typing algorithms.

One area for potential improvement is to extend the model to adapt to a password of arbitrary length. Presently, the
input to the neural network is a 31-vector representing the features discussed in the Data Structure section. With the
relative rigidity of the model to this input size, it would be interesting to explore how it adapts to dramatically different
password lengths, with correspondingly different feature vector lengths. Given extra time (and, crucially, extra data),
we would like to explore how to adapt the model to deal with this. We postulate that a recurrent neural network would
likely be a good choice here, but, with the limitations of available datasets, we were unable to explore this model on
varying password lengths (and as such, unable to explore its overall effectiveness).

Moreover, all of our testing was performed with a consistent password — . tie5Roanl. While we have no reason to
doubt that the effectiveness of the training and modelling technique would extend to arbitrary passwords of similar
length, to deploy this system in practice we would need to provide (and analyse) a more diverse range of training
passwords with different input features. Specifically, if we were to deploy the software and allow a user to use their
password of choice, we would need to have a sufficient corpus of other password attempts to generate adversarial
examples to train the model on (i.e. generate ’false’ password attempts). Again, with access to better data, we would
have been able to explore these possibilities more thoroughly.

Many of these ideas for future improvement are centered around the possibility of commercialising the algorithm
presented in this paper. As suggested by most successful products that are adopted en masse, this software would
have to be easy to use. This would require that we collect large quantities of valid and invalid user data for a specific
password, as suggested in the previous paragraph. Yet, forcing a user to enter so many repetitions of a password would
hardly constitute an easy-to-use product. As a result, we will have to introduce a form of latent biometric behavior
surveying — where we learn the user’s biometric typing subtleties as they casually use their keyboard, or keep training
the model as they continue to log in. When a user requests a new password, we can compose a biometric typing profile
for this password based on all the surveyed data. This is a single large improvement, among many others, that would be
required to convert our academic algorithm to a product.

7 Conclusion

While the security presented by traditional passwords may be flawed, we believe that we have created a compelling
augmentation through the use of keystroke biometrics. Our system rejects 100% of false actors on the test data we
observed, and as such we posit that it would reject almost all false actors in practice — a noticeable improvement when
layered on top of existing password security. Moreover, it is far more convenient and fast than two-factor authentication,
while providing comparable or better improvements in false-actor rejection; keystroke biometrics are next to impossible
to replicate (in contrast to security questions, or email accounts that are too-often secured by the same password as the
system being attacked). As such, while there is still progress to be made, our system provides a compelling improvement
that would be, with slight improvements, a meaningful and deployable addition to password security in a myriad of
contexts.

8 Contributions

Alex Langshur took primary responsibility for developing the model in Tensorflow. Harry Mellsop was responsible
for the initial development of the data gathering software, and for pre-processing the datasets. Of course, we both
collaborated on the aforementioned, and wrote our reports together. We would also like to acknowledge Ryan Kearns,
as this project builds, in part, on foundational research that we conducted as three earlier this year [6].

References
[1] Coursera, 2019, https://blog.coursera.org/about/.

[2] J. Brown. An average of 95 passwords are stolen every day, 2017, https://www.ciodive.com/news/an-average-95-
passwords-stolen-per-second-in-2016-report-says/435204/.

[3] S. Cho, C. Han, D. H. Han, and H.-I. Kim. Web based keystroke dynamics identity verification using neural
network, 2000, https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=SBADA02DC9A60E46B907A59E
AE39C80F?doi=10.1.1.95.4863rep=rep1type=pdf.

[4] G. Forsen, M. Nelson, and J. R. Staron. Personal attributes authentication techniques. technical report radc-tr-77-
333, 1977.

[5] T. Hunt. 86% of passwords are terrible (and other statistics), 2018, https://www.troyhunt.com/86-of-passwords-
are-terrible-and-other-statistics/.

[6] R. Kearns, A. Langshur, and H. Mellsop. Biometric keystroke learning for user authentication, 2019.

[7] K. S. Killourhy and R. A. Maxion. Comparing anomaly-detection algorithms for keystroke dynamics, 2009,
https://www.cs.cmu.edu/ keystroke/KillourhyMaxion09.pdf.

[8] S. Larson. Google says hackers steal almost 250,000 web logins each week, 2017,
https://money.cnn.com/2017/11/09/technology/google-hackers-research/index.html.

[9] A.Maas, C. Heather, C. T. Do, R. Brandman, D. Koller, and A. Ng. Moocs and technology to advance learning
and learning research: offering verified credentials in massive open online courses, 2014, 10.1145/2591684.

[10] R. Moskovitch, C. Feher, A. Messerman, N. Kirschnick, T. Mustafi¢, A. Camtepe, B. Lohlein, U. Heis-
ter, S. Moller, L. Rokach, and Y. Elovici. Identity theft, computers and behavioral biometrics, 2009,
http://www.ise.bgu.ac.il/faculty/liorr/idth.pdf.

	Introduction
	Related Work
	Dataset and Features
	Data Structure
	Data Collection Preprocessing
	Data Usage Strategy

	Methods
	Baseline Model
	Architecture Development
	Regularisation
	Training

	Final Results
	Discussion & Further Work
	Conclusion
	Contributions

