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Abstract

Food images dominate across social media platforms and drive restaurant selection and travel, but
are still fairly unorganized due to the sheer volume of images. Utilized correctly, food image
classification can improve food experiences across the board, such as to recommend dishes and new
eateries, improve cuisine lookup, and help people make the right food choices for their diets. In this
paper, we explore the problem of food image classification through training convolutional neural
networks, both from scratch and with pre-trained weights learned on a larger image dataset (transfer
learning), achieving an accuracy of 61.4% and top-5 accuracy of 85.2%.

1 Introduction

As it is frequently said, “we eat with our eyes”. With the continued proliferation of social media platforms such as
Instagram (now at 500 million daily active users [1]) as avenues for experience sharing and marketing, our digital
experience becomes more and more photo-driven, and of these, over 360 million photos are photos of food (looking at
just #food). Food images almost single-handedly drive dining experiences, food festivals, cooking classes, and the rise
of gastro-tourism [2], with over 88% of respondents in a 2015 survey [3] considering food to be the defining element
in selecting travel destinations. Most of these photos may be associated with a location or a tag, but are otherwise
unlabeled, making the food search experience largely disorganized and difficult to navigate. This project explores food
image classification with convolutional neural networks (CNNs) for better image labeling and clustering by dish, which
in turn may improve the recommendation and search flows for a better digital food user experience overall. Specifically,
the goal of the project is to, given an image of a dish as the input to the model, output the correct label categorization of
the food image.

2 Related Work

In the original paper that introduced the dataset (Food 101) used in this project, Bossard et al. [4] employed a weakly-
supervised mining method that relied on Random Forests (RFs) to mine discriminative regions in images, which yielded
an accuracy of 50.76%, outperforming all other alternative classification methods at the time, except for the CNN
approach, which as implemented by the paper achieved 56.40% accuracy on the same dataset.

A subsequent study on food image classification focused solely on the use of CNNs [5] constructed a five-layer CNN
to recognize a subset of ImageNet data [6], which consisted of ten food classes. Lu’s approach showcases the higher
potential of CNN versus a bag-of-features (BoF) model, with the CNN model outperforming BoF by 74% to 56%
accuracy. Additional data augmentation techniques were applied to bring up accuracy to 90%, which far outpaces the
best BoF performance. However, given the much reduced number of classes, the paper’s model performance cannot be
directly mapped to model performance on the Food-101 dataset.

More recently, Liu et al. implemented DeepFood [7], a CNN-based approach inspired by LeNet-5 [8], AlexNet [9],
and GoogleNet [10], employing Inception modules to increase the overall depth of the network structure. DeepFood
achieved 77.4% top-1 accuracy on the Food-101 dataset after 300,000 epochs. On a separate food dataset (UEC-100 /
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UEC-256), they were able to further improve their model performance by utilizing bounding boxes to crop the image to
just the dish, eliminating background noise.

Given the sparsity of studies on food images specifically, we also looked at the broader field of image classification on
the ImageNet dataset, which has often been used as a benchmark for model performance. AlexNet [9], a top contender
in the 2012 ImageNet Challenge, consisted of 5 convolutional (CONV) and 3 fully connected (FC) layers and used
the less common (at the time) ReLU activation function to address the vanishing gradient problem, reaching a top-5
accuracy of 84.7%. VGGNet [11] in the later 2014 ImageNet Challenge differed from other top-performing models in
that Simonyan et al. used fixed-size, smaller 3x3 filters to decrease the number of parameters and train a deeper model,
reaching an accuracy of 92.3%. InceptionNet [10] (also known as GoogleNet) increased both the depth and width
of the model using an Inception module with kernels of different sizes. Szegedy et al. were able to achieve a top-5
accuracy of 93.3% in the 2014 ImageNet Large-Scale Visual Recognition Challenge. ResNet [12] in 2015 developed
even deeper models (152 layers, 8x deeper than VGG) using Residual blocks to solve the vanishing gradient problem.
By increasing the depth of the model substantially, He et al. were able to further improve classification on ImageNet to
a top-5 accuracy of 95.51%.

Figure 1: Inception module [10] with dimension reduction (left) and residual block [12] (right)

3 Data

A total of 101,000 images from 101 classes of food were used from the Food-101 dataset [4], with 1000 images for
each class. Of the 1000 images for each class, 250 were manually reviewed test images, and 750 were intentionally
noisy training images, for a total training data size of 75,750 training images and 25,250 test images. Compared to the
10-class food image dataset from ImageNet [6], this Food-101 dataset presents some additional challenges. For one, the
ImageNet food image dataset contains relatively distinct and few food categories (apple, banana, broccoli, burger, egg,
french fries, hot dog, pizza, rice, and strawberry), while Food-101 contains some food items that are similar in both
content and presentation (e.g. pho vs. ramen). Additionally, the training dataset images were very dissimilar in lighting,
coloring, and size, and also contained mislabeled images, which were left in the training dataset to encourage models to
be robust to labeling anomalies. We also utilized ImageNet weights during transfer learning to boost model accuracy,
though not the ImageNet dataset directly.

Images were normalized and resized appropriately, either to 128x128 or 256x256 in the initial model implementations,
or to model specification when using transfer learning. Image data was augmented through rotation, shifting, and
horizontal flipping to avoid overfitting. During transfer learning, images were also preprocessed using the custom model
preprocessing functions, which were implementations of the image preprocessing in the original model papers.

(a) Labeled ’ramen’ (b) Labeled ’pizza’ (noisy) (c) Labeled ’apple pie’

Figure 2: Images from Food-101 dataset
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4 Methods

4.1 Setup

Models were run on an Amazon Web Services Elastic Compute Cloud (AWS EC2) instances with Deep Learning AMI
(Ubuntu 18.04). Models were written in TensorFlow [13] and later, Keras [14], a high-level library for deep learning.
Models were saved on each epoch to make training runs more robust to failures and allow training to pick up from
the last saved epoch. We also wrote several utility classes to resize / preprocess images, as well as to test models on
a randomly-chosen smaller subset of classes. Performance on the full Food-101 dataset could be extrapolated from
performance on the smaller subset, which accelerated model design iterations as poor-performing models could be
abandoned earlier.

The loss function used across all models was categorical cross-entropy, represented below:

L(y, ŷ) = −
M∑
c=1

y ∗ log(ŷ)

4.2 Training from Scratch

As a first approach, we trained a baseline model on 64x64-sized images with 4 convolutional and 2 fully-connected
layers. Within a few epochs, the highest accuracy achieved was 28.2% on the val set, but from then on the model started
overfitting to the train set and accuracy only declined from there.

We hypothesized that the lower image resolution, which was sufficient for the MNIST and SIGNS datasets, did not
provide enough detail for the model to differentiate food images, which tend to take on a much less structured form and
can look amorphous at low resolution. Increasing the image resolution and model complexity (by adding 2 additional
layers to the original baseline model) increased the accuracy to 36.3%, though again the model was overfitting to the
training set.

After optimizing on the initial model design, we began looking at models proposed in image classification papers,
starting with the model proposed by Lu [5], which despite the different dataset (ImageNet instead of Food-101) was
still optimized on food images. The architecture of this model was composed of 3 convolutional layers of various sizes
with max-pooling, followed by a fully-connected layer. Despite duplicating the paper’s model architecture, there was
no improvement in performance, likely due to the difference in number of classes (10 vs. 101).

Figure 3: AlexNet architecture [15]

We introduced data augmentation at this point to address the overfitting problem by applying transformation functions
to the original images, and also implemented AlexNet, which has a similar structure as the baseline model, but used
filters of several different sizes instead of just 3x3 filters. Data augmentation allowed the model to train for more epochs
before overfitting to the training set, and AlexNet achieved an accuracy of 32.8%

4.3 Transfer Learning

At this point, we decided to implement transfer learning from different models trained on the ImageNet dataset to take
advantage of the features learned by those model using deeper architectures and with more training time, specifically
VGG16, ResNet50, and InceptionV3. Transfer learning was implemented by loading the ImageNet weights into each
model and freezing the base layers of each model while removing the top layers that were trained specifically on
the ImageNet classes. These top layers were then replaced with trainable layers meant to learn classification on the
Food-101 classes.

VGG16 was a call back to the baseline model in terms of using fixed-size 3x3 filters and was composed of a deeper
model architecture, and was surprisingly slow to train. For faster training, we began looking more into ResNet50 and
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InceptionV3, with both models training sans the top layer. In ResNet50, the model architecture remedies the common
issues with deeper neural networks (such as vanishing gradients) through residual blocks, which allow the model to
take advantage of skip connections between earlier and later layers. This essentially allows models to skip layers do not
improve the overall accuracy and choose the optimal number of layers during training, boosting accuracy to 42.84%.

For InceptionV3, we experimented with unfreezing some of the base model layers, and found that training with the top
few layers unfrozen for training improved performance over just training the top layer. In InceptionV3, the inception
modules allow the model to train with different filter sizes at each layer (to capture both global and local information)
without risking the model overfitting or being too computationally expensive. We also attempted full-layer training, but
found the training extremely slow and computationally expensive. Finally, in addition to the image-preprocessing on all
images done before training, we also applied InceptionV3’s custom image preprocessing function to all images during
training, which increased accuracy to 61.35%.

Figure 4: Confusion matrix for InceptionV3 model, actual vs. predicted

In the case of all the models pre-trained with ImageNet weights, the initial accuracy hovered around that of the base
model, but then continued to increase with more epochs. The additional features on ResNet50 and InceptionV3 also
allowed the models to train longer and with improved accuracy before beginning to overfit to training data.

5 Results and Discussion

In addition to the different model types trained on Food-101, for each model, we also tuned features such as the layers
on top of the base models, methods of data augmentation and image preprocessing, dropout and learning rate / optimizer
hyperparameters (Table 1).

The primary evaluation metrics for these models was top-1 and top-5 accuracy. Underfitting was an issue in earlier
baseline models, while overfitting was a problem for deeper models when transfer learning, though this was mitigated
through data augmentation, dropout, and model architecture components such as the residual block. During transfer
learning, model optimizers were chosen based on their originating papers, and hyperparameters such as learning rate
and momentum were chosen empirically.

From the confusion matrix (Figure 4), edamame was the most accurately labeled food class, while steak was the least
accurately labeled, due to the consistency of both images in presentation, with steak taking on many more variations.

4



Model Res Epochs Layers Params Model Details Top-1 Top-5

Base7 64 8 7 - - 28.3 -
Base9 128 5 9 - - 36.3 -
AlexNet 227 50 9 29M - 25.7 -
AlexNet 227 50 9 25M data augmentation, removed dropout 32.8 61.9
AlexNet 227 50 9 59M same padding 32.5 61.4
VGG16 224 50 19 15M terminated early, too slow 18.8 43.5
ResNet50 224 23 52 24M - 39.0 67.1
ResNet50 224 14 52 24M modified optimizer 42.8 71.4
InceptionV3 299 8 50 24M top-layer training 43.1 -
InceptionV3 299 50 50 24M top-N-layer training, custom preprocessing 61.4 85.2

Table 1: Model accuracy results

Looking at the food classes most likely confused with each other, it is clear that top-5 accuracy is higher due to food
classes that present very similarly visually, where the model can narrow the image class to one of several, but does not
always select the right label.

Figure 5: Spaghetti bolognese (left) often confused with spaghetti carbonara (right)

6 Conclusion and Future Work

We tested different model architectures against the same Food-101 dataset and classification problem, both models
trained from scratch and transfer learning with AlexNet, VGG16, ResNet50, and InceptionV3 models pre-trained on
ImageNet weights. The highest performing model was a pre-trained InceptionV3 model with top layers unfrozen in
stages, with total accuracy of 61.4%, which outperforms the performance of the original Food-101 paper model, but not
DeepFood by Liu et al. Transfer learning was the most successful because the earlier pre-trained layers had already
learned a lot of the general features needed to identify food images.

Future work would involve more optimization on hyperparameters and model aspects such as which layers to freeze
versus make trainable during transfer learning. Due to computing resource and time constraints, most model imple-
mentation decisions were made by examining the convergence of the model and relative metrics from training versus
validation, but an exhaustive hyperparameter search would have been a more empirical approach.

Model performance could be further improved by adding bounding boxes to the images. Some of the images from the
Food-101 dataset (e.g. Figure 1b) are not properly cropped on just the food image and contain other noisy elements,
which could be addressed by training another model to just tightly bound the food itself, before passing that output as
an input to the food image classification model trained in this paper. Another possibility is to train models to recognize
images within a subset of food (e.g. fruits vs. noodles vs. pastries), since many of the errors from the model are a result
of confusing similar food items with each other (e.g. tiramisu vs. chocolate cake).

Finally, given the relatively high top-5 accuracy, we can utilize other non-image features to improve top-1 accuracy. For
example, by using a food location’s menu or cuisine definition, we can more confidently classify food images from
the place (e.g. if the classifier identifies a noodle dish as pho or ramen but the restaurant is Japanese, we can more
confidently label the image as ramen).

7 Contributions and Code

This was a solo project. All code can be found at https://github.com/malinajiang/cs230-food-model.
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