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Abstract

The way people speak changes over time, and can be reflected in pop cultural
media such as books or songs. In this project, I apply a couple of different neural
network models - one simple, and one based on Long Short-Term Memory (LSTM)
models - in order to try to classify the decade a song was released in solely by its
lyrics. While I did not achieve significant success with my models, my approach
shows potential for success using more robust techniques.

1 Introduction

While there are ways to find out the age of the materials of a physical book or document, there may be
situations when people such as linguists or historians would like to figure out the original publication
date of a text through the writing alone. Since vernacular speech changes with time, and because
song lyrics tend to reflect how people speak colloquially, my aim is to try to train neural networks to
predict the decade in which a song was written in just by its lyrics.

The input to my models are a vectorized version of the song’s lyrics, meaning each word is represented
by the index of that word in a larger corpus of text. I then pass that two different neural networks — a
simple, regular one for my basic model, and a more complex one made of LSTMs for my sequential
model. I then find which decade, between the 1960’s and the 2010’s, the song was most likely
released during.

2 Related work

Upon looking for previous attempts at this challenge, I found that I could not find anything exactly
like my project. It seems, however, that there has been plenty of work done regarding sentiment
classification, and I believe that there are subtleties involved in detecting sentiment that could also
be applied to detecting something as nuanced as a specific decade’s vernacular. In their research,
Radford et al. have found that LSTM models could be used to efficiently determine sentiments
involving high-level concepts, and that a particular unit from these models could generate sentiments
as well [1]. Peng et al. found that RNN-based models could be used to detect sentiment based on
character radicals of the Chinese writing system, which can then lend themselves to sentence-level
sentiment classification [2]. Finally, Kalchbrenner et al. found that there are ways to use CNN models
to capture long-term dependencies, which could be useful when involving entire songs or longer
texts [3]. These examples are but a handful of products of research showing the ability of neural
network models to capture subtleties from text, which are seem promising in the context of what I am
attempting.
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3 Dataset and Features

3.1 Billboard’s Hot 100s

One dataset was of Billboard’s Hot 100s from 1965 to 2015, scraped and compiled by another
researcher [4]. After cleaning the data, I was left with 4,853 usable songs with their full lyrics
represented as a string and their release years. This dataset provided a fairly even distribution of
sequential data, which made it useful to train LSTM-based models. Each song’s lyrics were then
used to create a vectorizer corpus, and converted into an array of numbers representing each word’s
position in the corpus. While the sequential data seemed useful, its small size led me to look for a
larger dataset.
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Figure 1: Billboard Dataset Distribution
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3.2 Million Song Dataset

The second dataset I used was a subset of the Million Song Dataset [S]. From here, I gathered songs
with release years available from the musiXmatch Dataset, and gathered 154,527 songs released
between 1965 and 2015 [5]. These songs’ lyrics were only available in Bag-of-Words format, so I
could not use them for my sequential models. I still created a non-sequential vector of each word
being used and vectorized that as well to use as input for my model. This dataset was significantly
larger than the Billboard’s one, but I later found that the distribution was incredibly skewed towards
songs released between 2000 and 2010.
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Figure 2: Million Song Dataset Distribution

4 Methods

I implemented two different models: a simple network to use as a benchmark and to see the effect of
the larger Million Song dataset, and a more complex one to try to take advantage of the sequential
data in the Billboard’s dataset. Both models encode the release decade into a one-hot vector using
Keras, then feed their respective networks’ outputs into a Softmax layer [6].

4.1 Base Models: Billboard and Million

As a baseline to compare my more complex sequential models to, I decided to implement a very
simple neural network using Tensorflow [7]. This "network" was just a single hidden layer that



condenses the input to 10 units, then sends that to the Softmax layer to determine the decade. I used
trained this base model on both the Billboard’s data and the Million Song data to compare the effects
of a larger dataset.

4.2 Sequential Models: 2-Stack and 3-Stack

My more complex models were revolved around two details: taking advantage of the sequential
Billboard’s data, and trying to reduce overfitting from the small dataset size. Thus, my two Sequential
models were based around stacking bidirectional LSTMs (BLSTMs) in tandem with dropout, in order
to apply regularization. In an attempt to see if there was any important information about lyrics in
the context of their previous and next words, I chose to use BLSTMs instead of regular LSTMs. 1
trained one model, 2-Stack, with two BLSTMs, and another, 3-Stack, with three. 2-Stack was trained
by alternating a BLSTM with a Dropout layer twice before outputting to the Softmax layer. 3-Stack
added a third BLSTM to the output of 2-Stack before going to the Softmax layer.

S Experiments/Results/Discussion

5.1 Hyperparameters
I trained each model according to these hyperparameters:

e Batch Size : 10 (Base), 20 (Sequential)
Epochs : 75 (Base), 130 (Sequential)
Learning Rate : 0.001

Betal:0.9

e Beta2:0.999

I started with a batch size of 10 and 75 epochs for the base models since their validation accuracies
seemed to stagnate quickly. The sequential models took longer both in terms of computation and for
validation accuracies to converge, so I decided to double the batch size and increase the number of
epochs.

5.2 Loss

Since I was training for multi-class classification, I decided to use Categorical Cross-Entropy as my
loss function. Categorical Cross-Entropy is defined as [8]:
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Figure 3: Categorical Cross-entropy Loss Function

5.3 Metrics

As a general way to describe a model’s performance, I chose accuracy as the primary quantitative
metric. Given that this is a 6-class classification problem, I decided to qualitatively look at the general
spread of wrong classifications within the confusion matrices as well. I reasoned that even if the
accuracies of two models are similar, perhaps one could be more closely centered around the correct
class, while the other could be spread out more.

5.4 Results

All four models did not yield fantastic results, but were also not terrible. Randomly guessing a decade
would give about a 16.67 percent accuracy, so considering the relative simplicity of the models and
the shortcomings in the datasets, I would say that these results are not too bad. Below is a table of the
results:



Model Train Accuracy | Test Accuracy
(%) (%)
Billboard 99.26 3r.77
Million 67.23 52.53
2-Stack 99.18 40.11
3-Stack 79.25 377

Figure 4: All model accuracies

The Million model gave the highest test accuracy out of the four, but this should be taken with a grain
of salt. The Million Song Dataset was heavily skewed towards the 2000’s decade, with over half
of the data in that category alone. The confusion matrix also shows that this model is essentially
training to guess 2000’s for about half the time, just mimicking the poor distribution of training data.
Therefore, I don’t think that this was the best model.

2-Stack yielded the second highest test accuracy, with 40.11 percent. While it produced higher
accuracy than 3-Stack, there are interesting details to be found in their confusion matrices. 2-Stack’s
mis-classifications are spread out more among the 6 decades, whereas 3-Stack’s mis-classifications
are spread more closely around the actual decade itself. This may imply that the additional BLSTM
is managing to capture something that centers the prediction more closely around the actual year.
Finally, it is interesting to note that a single-layer neural network is able to still yield a higher
accuracy than 3-Stack. Perhaps the sequential information that remains in the vectorized song lyrics
already contains a good amount of information that can be captured easily by neural networks.

Billboard's Hot 100s Million Song
Actual Actual
Predicted | 1960's | 1970's | 1980's | 1990's | 2000's | 2010’s Predicted | 1960's | 1970°’s | 1880's 1990's | 2000's | 2010’s
1960's 20 30 11 5 6 L] 1960°s 25 61 64 127 194 3
1970's 64 127 95 58 40 21 1970's 30 131 1 248 294 2
1980's 36 58 99 60 38 30 1980's 85 234 580 747 964 20
1990's 20 24 50 110 41 19 1990's 133 376 757 2039 2836 30
2000's 5 17 29 35 129 34 2000's 692 1672 3047 8904 21579 388
2010's 4 10 14 1" 35 65 2010's 0 0 1 1 4 0
2-Stack 3-Stack
Actual Actual
Predicted | 1960's | 1970's | 1980's | 1990's | 2000's | 2010's Predicted | 1960's | 1970’s | 1980's | 1990's | 2000's | 2010's
1960's 32 26 20 19 8 8 1960’s 1 0 0 0 0 0
1970's 64 127 a7 41 28 16 1970s 86 18 84 27 14 9
1980's 36 57 96 51 25 14 1980°s 45 108 132 75 37 21
1990's 8 27 30 84 18 8 1990's 15 0 78 127 67 42
2000's 7 19 43 74 177 81 2000's 2 10 24 50 17 103
2010's 2 10 12 10 32 68 2010's 0 0 0 0 0 0

Figure 5: Confusion Matrices




6 Conclusion/Future Work

My sequential models were able to produce better results than expected, considering limitations, but
were nothing fantastic. However, there are glaring issues of not having enough data available and
training on skewed data. Therefore, the most immediate next step to this project would be to try to
amass a significantly larger amount of properly distributed data. Also, as the confusion matrices for
2-Stack and 3-Stack showed, there may be potential for improvement if more complex models are
used. It would make sense that a robust, pre-trained model such as Google’s BERT could potentially
provide much higher accuracies than a couple of BLSTMs thrown together. Finally, the classes
themselves could be tweaked as well. An issue that this current classification problem could have
is differentiating between songs that were released within a year or two of each other, but fall into
different categories. For example, will a song from 1979 have significantly different lyrical content
than a song from 19807 Thus, it might also be worthwhile adjusting the classifier definitions as well.
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