
Autumn 2019 CS 230 Final Project Report

”THIS GAME IS IN THE FRIDGE”: PREDICTING NBA GAME OUTCOMES
. Jesse A Rodŕıguez, jrodrig@stanford.edu
Abstract
Three NN architectures are proposed along with a novel feature design to predict the outcomes and
popular betting metrics of NBA basketball games. The most predictive feature design consisted
of the statlines of the top 3 players of each team in their last 4 games. The binary classifier NN
performed the best in predicting game outcomes, achieving 59.8% accuracy on the test set. The
exponential score predictor achieved 59.1% accuracy and reproduced the score distribution of the
test set quite well, indicating that it may be effective in predicting the over/under for NBA games.
The softmax score predictor only achieved 57.6% accuracy but it managed to reproduce the margin
of victory distribution remarkably well. Ultimately, a mismatch between the train set and the
dev/test sets as well as an overall lack of data likely led to the unremarkable performance of the
three models.

Motivation and Related Work
. Of all the areas to which machine learning has been applied during its rise to ubiquity, one of
the most popular has been predictive modeling for sporting events[1]. Though it may seem frivolous,
the recent legalization of sports betting in 2018 has made correctly predicting the outcomes of
sporting events quite lucrative[2]. For my CS 230 project, I decided to take a sport that I love and
know very well, NBA basketball, and try to create a deep learning model that can outperform prior
models, the best of which lie in the 60-70% range[3][4][5][6] in predicting game outcomes, which is
comparable to human experts[6][7]. These approaches place an emphasis on team-level metrics that
are averaged over whole seasons or several games. Prior deep learning approaches, particularly that
of ref. [6] where the authors utilize a fusion of four NN classifiers via a Bayesian network, have
seen accuracies in excess of 70% using team-level metrics. While this out-performs the experts, it
doesn’t allow for the prediction of final scores which gives access to several key betting metrics.
This study also used a dataset of only 620 games, so the model is not likely to generalize well as
the stlye of NBA play has been evolving so rapidly as of late. This project aims to address these
issues with a feature design focused on recent performance of individual players.
. Predicting the outcome of sporting events in general can be considerably difficult, especially
in sports with a low number of scoring opportunities. Basketball is a unique sport in that there
are many scoring opportunities throughout each game, reducing the influence of randomness on
game outcomes. In this work, several NN architectures are trained to predict winners via both
binary classification and final scores, with the latter allowing for the additional prediction of point
spreads, over/unders, and other popular sports bets/metrics. Choosing final scores as the objective
is ambitious, as the randomness mentioned before has an opportunity to manifest itself in predicting
something with such a high variance, but the values generated can still be effective in predicting
the common metrics above.

Dataset and Features
. The base dataset for this work is simply the complete statline for every player in each game
from the 2012-2013 NBA season to the 2017-2018 season. I have chosen a 80/10/10 split for
train/dev/test, which results in dataset sizes of about ∼5800/725/725 games depending on which
feature parameters are chosen, as I will explain shortly. In order to ensure that the model cannot
’see the future’ (i.e. that the model is trying to predict the outcomes of games that occurred after
games in the training set) and also that the test and dev sets are pulled from the same distribution,
the train set is simply the first 80% chunk of the games by chronological order and the test/dev set
examples are sampled uniformly from the remaining 20%. Histograms for individual team score,
combined scoring (relevant for over/under bets), and point spread for the train/dev/test sets are

1 Jesse A Rodŕıguez

Autumn 2019 CS 230 Final Project Report

included below in Figure 1. We can see already that the train set has a slightly different distribution
than the test/dev sets, most evident in the per game scoring where the mean of the distribution
is shifted upward ∼10 points in the dev/test sets. This is likely due to the recent change in pace
and style of play in the NBA à la the Golden State Warriors post-2016 where teams take and make
much more 3 pointers than before and thus have much higher scoring games. The distributions of
the point spreads (margin of victory) seem to be fairly consistent, however. We will discuss the
potential impact of these factors later.

Figure 1: Histograms for individual team scores (left), combined scores (middle) and point spreads
(right) from the NBA game corpus used in this project.

. The main aspect of my approach that differs from previous attempts at final score predic-
tion or even just game outcomes in the past is feature engineering. Up until now, all of the prior
attempts at predicting NBA game outcomes that I found used team-level metrics (total points,
rebounds, assists, etc.) averaged over entire seasons[8][9][10][11]. While this does lead to prediction
accuracies of game outcomes on par with the experts, I felt that this data is just too simplistic to
accurately predict the outcomes of games, and particularly their scores. For example, what if one
player will not be playing due to injury, or is just returning from one? What if one player is having
an incredible hot streak (many NBA fans will remember ’Linsanity’, for example)? What if the
team itself is in a slump? These are the edge cases that I aimed to capture with my feature design.
. My feature/label set up is as follows: Each feature vector contains the statlines of the top
np players (ranked by scoring) that are on the roster for the game in question for each team in
their personal previous ng games. This means that if a player is just returning from an injury,
we pull from the last ng games they played before being injured. For example, when you consider
the performance in the previous 5 games of the top 8 players and omit no stats (17 total), you
have feature vectors of length 1360. The player statlines for each team are stacked home team
first, so as to encode the home-court advantage, and then standardized by subtracting the mean
and dividing by the standard deviation. The labels are simply the final scores of each team with
the order corresponding to the order in which the statlines are stacked. If a binary classifier is
being trained, the labels are converted to 1’s and 0’s where 1 corresponds to home team win. An
example of an un-normalized/standardized feature vector for ng = 1 and np = 2 is found below,
where THP is top home player, 2HP is second-ranked home player, and TAP is top away player,
and the stats you see are the statlines for the players in question from the last game that they played:

[111︸︷︷︸
home score

, 102︸︷︷︸
away score

]

︸ ︷︷ ︸
label

[29︸︷︷︸
THP PTS

, 8︸︷︷︸
THP REB

, 5︸︷︷︸
THP AST

, ... 17︸︷︷︸
2HP PTS

, 3︸︷︷︸
2HP REB

, ... 26︸︷︷︸
TAP PTS

, 4︸︷︷︸
TAP REB

, ...]︸ ︷︷ ︸
feature vector

. The code to produce these datasets from player box scores stored in csv files can be found at
http://github.com/JesseRodriguez/CS230 229 FinalProject. The Box Score data must be in the

2 Jesse A Rodŕıguez

http://github.com/JesseRodriguez/CS230_229_FinalProject

Autumn 2019 CS 230 Final Project Report

same format as the Kaggle dataset found at http://www.kaggle.com/pablote/nba-enhanced-stats.
The Refridgerator class (found in RNBA.py in the repo), as I’ve called it (this is a reference to
the late, great NBA commentator Chick Hearn), takes these box scores and produces a dataset for
different values of ng and np specified by the user. Below, we sweep these values to search for an
optimal combination to maximize predictive power of the model.

Methods

. In this work, three distinct Neural Network architectures are explored. The first and most
simple architecture is a simple binary classifier fully-connected network with 3 hidden layers and a
sigmoid output layer that utilizes the binary cross entropy loss. The second architecture is designed
to predict final scores and is forked; containing 6 fully connected layers with a fork after layer 3 and
an output layer with an exponential activation for each fork. This model utilizes the summed mean
squared error loss of each of the forked outputs. The final architecture contains 9 fully connected
layers with a fork after layer 6. The output layer is a softmax classifier where the classes are the
possible final scores of each team. In our dataset, the highest score observed is 149 and the lowest
is 58, leading to two output layers of size 92 (one for each fork). This model uses the categorical
cross entropy loss. A diagram of each model along with the number of nodes in each layer and
expressions for their output layer activations and losses is included below.

Binary
Classifier

Exponential
Score Predictor

Softmax
Score Predictor

Sigmoid Output Activation

Binary Cross Entropy Loss

Number of Nodes

a[L] = 1
1 + e−Z

J = 1
m

m

∑
i= 1

| | ̂y(i) − y(i) | |2
2

Exponential Output Activation

MSE Loss

Number of Nodes

Softmax Output Activation

Categorical Cross Entropy Loss

Number of Nodes

J = − 1
m

m

∑
i= 1

(y(i)log ̂y(i) + (1 − y(i))log(1 − ̂y(i)))

a[L] = eZ

J = − 1
m

m

∑
i= 1

y(i)log ̂y(i)

a[L]
k = eZk

∑i eZi

[nx; 2; 5; 5; 1] [nx; 6; 5; 5; fork; 5; 5; 1] [nx; 200; 100; 50; 20; 10; 5; fork; 5; 5; 92]

Figure 2: NN architectures for the three model types explored in this work.

. Each model uses ReLU activations in the hidden layers. The weight kernels are initialized via
Xavier Initialization and the biases are initialized at 0. The models are optimized via the Adam
algorithm[12] with a minibatch size of 128, a learning rate of 0.001, with β1 = 0.9 and β2 = 0.999.
Regularization methods experimented with include L2 and L1. Due to the small size of the dataset,
HPC resources were not required and the models were trained on a personal laptop with Keras[13].

Results and Discussion

Design Considerations/Hyperparameters
. The first observation we need to make here is how large our dataset is in relation to the size
of our feature vectors. For example, if ng = np = 10 (yielding feature vectors of length 1700) and
the first hidden layer of the neural network is just 4 units, we already have more parameters than
training examples, so the model will almost certainly overfit if there is just one output. Thus, the

3 Jesse A Rodŕıguez

http://www.kaggle.com/pablote/nba-enhanced-stats

Autumn 2019 CS 230 Final Project Report

number of nodes in each layer of each model was chosen according to the train set accuracy. Once
the game outcome prediction accuracy for the train set corresponding to ng = np = 10 approached
90%, I ceased modifying the NN architecture. Ideally, the architecture would be optimized for
each ng/np pair, but that type of investigation proved to be beyond the time constraints of this
project. The learning rate, Adam parameters, and number of training epochs were similarly set
via an optometrist-like algorithm. Since the novelty in this project lies in the feature design, the
hyperparameter tuning effort was invested in the hyperparameters associated with the features,
leaving further tuning of other hyperparameters to future work.

Feature Development
. To see which feature design would lead to a model with the greatest predictive power, I swept
over all combinations of ng and np in the range of 1 to 10 and trained each model architecture
arrived at above. The results of this sweep are found below in Figure 3 where the models are
evaluated according to whether or not they predicted the outcomes of the games correctly.

Tr
ai

n
S

et
 A

cc
ur

ac
y

Exponential Score Predictor Binary ClassifierSoftmax Score Predictor

D
ev

 S
et

 A
cc

ur
ac

y

Figure 3: Dev set performance of the 3 NN models for each ng, np pair.

. We can see immediately that of the two score predictor models, the exponential score predictor
is far superior, where the softmax score predictor for most combinations of np and ng performs a bit
better than a coin flip, occasinally approaching 60% accuracy on the dev set. The binary classifier
model consistently performs in excess of 60% on the dev set, reaching the realm of human experts
in performance. It is clear through evaluation of these values, however, that all three architectures
have bias and variance problems, and tend to overfit to the training set for large values of ng and
np. Adding L2 or L1 regularization to all or a subset of the model layers does not seem to address
the variance problem. I also tried modifying the complexity of the models manually to try and
decrease variance in the lower right regions of these heatmaps, but ultimately the performance for
other combos of ng and np would suffer and the accuracy values reached would not be as high as
we observe here. It is possible that adding dropout could improve model performance. Ultimately,
however, it may just be a fundamental mistmatch of the train set to the dev set that causes the
problems we see here. As was mentioned before, unfortunately the NBA saw quite the revolution
in style of play right about at the time of the train/dev split, so any model trained on this corpus
is somewhat destined to be biased.

4 Jesse A Rodŕıguez

Autumn 2019 CS 230 Final Project Report

Test Set Performance
. Based on the results above, for the exponential score predictor, I tested the ng = 4, np = 3
dataset; for the softmax score predictor, I tested the ng = 4, np = 2 dataset; and for the binary
classifier, I chose the ng = 4, np = 3 dataset. Accuracies on the test set are found below:

Model ng,np pair Train Set Accuracy Dev Set Accuracy Test Set Accuracy

Exponential (4,3) 62% 60% 59.1%

Softmax (4,2) 59% 59% 57.6%

Binary (4,3) 75% 62% 59.8%

Thus we have some slight overfitting to the dev set, but overall we have comparable performance
on the test set. In addition, we take a look at the distributions of the scores predicted by the
exponential and softmax models as compared to the true test set labels.

Figure 4: Histograms for individual team scores (left), combined scores (middle) and point spreads
(right) from the true test set values and the predictions from each model.

. Interestingly, the predicted score distributions produced by the exponential model look much
better than the sigmoid (despite some evidence of overfitting to the train set as the mean is shifted
down about 10 points as we see above), but the point spread distribution produced by the sigmoid
is much more representative. This suggests that the sigmoid architecture may be more conducive to
predicting point spreads while the exponential model is more suited to predicting game outcomes
and over/unders, though a more rigorous investigation of these metrics is needed to say for sure.

Conclusion and Future Work
. The most predictive feature design consisted of the statlines of the top 3 players of each team
in their last 4 games. The binary classifier NN performed the best in predicting game outcomes,
nearly achieving a performance on the test set on par with human experts. The exponential score
predictor reproduced the score distribution of the test set quite well, indicating that it may be
effective in predicting the over/under for NBA games. The softmax score predictor performed rela-
tively poorly on the previous two tasks but managed to reproduce the margin of victory distribution
remarkably well. Ultimately, a mismatch between the train set and the dev/test sets as well as an
overall lack of data likely led to the unremarkable performance of the three models.
. In the future, a number of immediate next steps along with a couple long-term steps are
apparent. First, tuning of the hyperparameters associated with the optimization algorithm would
likely lead to stronger results. Second, omission of some stats (like 2 pointers made and attempted,
for example) along with the inclusion of other stats that might be quite predictive and weren’t
present in this dataset (such as +/- or unique player IDs), would likely improve performance by
shrinking the size of the feature vectors and making the information present more potent. Ulti-
mately, however, the main issue that needs to be addressed is the lack of training data and the
mismatch between the train and dev/test sets. To tackle both of these problems, it may be effec-
tive to artificially generate data via the new (and quite sophisticated) NBA basketball video games.
These games simulate entire seasons of the NBA remarkably well, and using them to generate an
immense dataset to train on may lead to very high prediction accuracy. Overall though, I believe
the work presented here is a good first step toward considering a new dataset paradigm in NBA
basketball prediction, and it is primed to be built upon.

5 Jesse A Rodŕıguez

Autumn 2019 CS 230 Final Project Report

References
[1] : Bunker, R. et al., A Machine Learning Framework for Sport Result Prediction. Applied Computing and Infor-
matics Vol. 15, Issue 1, Pg. 27-33. (2019)

[2] : Ryan, S. et al., Application of Bayesian Network to total points in NBA Games. Industrial and Manufacturing
Systems Engineering Conference Proceedings and Posters. 179. (2019)

[3] : Lin, J. et al., Predicting National Basketball Association Winners. CS 229 Final Project. (2014)

[4] : Torres, R., Prediction of NBA games based on Machine Learning Methods. University of Wisconsin-Madison.
(2013)

[5] : Jain, S. et al., Machine Learning Approaches to Predict Basketball Game Outcome. 3rd International Conference
on Advances in Computing, Communication & Automation. IEEE. (2017)

[6] : Loeffelholz, B. et al., Predicting NBA Games using Neural Networks. Journal of Quantitative Analysis in Sports.
Vol. 5 Iss. 1, Article 7. (2009)

[7] : AccuScore, The Leader in Sports Forecasting, https://accuscore.com/basketball/nba-picks

[8] : Uudmae, J., CS 229 Final Project: Predicting NBA Game Outcomes. CS 229 Final Project. (2017)

[9] : Avalon, G. et al., Various Machine Learning Approaches to Predicting NBA Score Margins. CS 229 Final
Project. (2016)

[10] : Thabtah, F. et al., NBA Game Result Prediction Using Feature Analysis and Machine Learning. Annals of
Data Science 6(1):103–116. (2019)

[11] : Bucquet, A., Sarukkai, V., The Bank Is Open: AI in Sports Gambling. CS 229 Final Project. (2018)

[12] : D. P. Kingma, J. Lei Ba. Adam : A method for stochastic optimization. arXiv:1412.6980v9 (2014)

[13] : tensorflow.org, Keras (accessed 2019)

6 Jesse A Rodŕıguez

