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Abstract

The hardware and sensors in smartphones and wearable devices are becoming
more powerful and precise every year; the valuable data these sensors collect
can be used for more precise Human Activity Recognition. In this paper, we
explore implementing both Convolutional Neural Networks and LSTMs to classify
18 unique activities ranging from eating chips to dribbling a ball from labelled,
time-series gyroscope and accelerometer data collected from a smartwatch and
smartphone. All of our work is located in our public repo here, and the processed
data can be accessed here.

1 Introduction

Wearable devices and smartphones are ubiquitous, and a majority of these devices contain many
sensors, including Inertial Measurement Units (IMUs) such as gyroscopes and accelerometers. As
these sensors have become cheaper and more available, an increasing number of people have ’always-
on’ accelerometers and IMU sensors active. There are an increasing number of machine learning
applications for using this data, given how much information can be inferred from them. For example,
IMU data can be used for ML-based gesture recognition, like with the Raise to Speak feature on the
Apple Watch.

This data could also be used to perform human activity recognition (HAR), to recognize the motion
characteristics of the user. This has several applications, for example, in healthcare, to measure the
activity and fitness characteristics of the user. Some devices do this for fitness tracking, but the
potential for activity recognition extends beyond just exercise; the utility of HAR becomes more
apparent when it can be used to classify many more everyday activities, such as logging when you
brush your teeth, or automatically estimating your food intake based on estimation of when you are
eating and drinking.

Using IMU data for this purpose is also often preferable to other modalities; it is privacy-preserving
since there is less user-identifiable data compared to audio or camera data, and IMUs tend to be less
computationally and power-intensive than other sensors such as cameras and microphones.

2 Related work

Another common method that is proposed to extract frequency-domain features using MFCCs
or Spectrograms on the accelerometer data. However, these feature-based approaches require an
intricate and extensive knowledge of the domain, and often are time-consuming to both identify and
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compute.(l) They are also brittle, and it is difficult to optimize the features end-to-end, since they
are the first input to the model (4). As the number of motion activities scale, so does the effort in
identifying relevant features. Some previous work (2) has investigated using deep learning for HAR,
typically with one-dimensional convolutional neural networks (CNNs) (7).

The experiments by Bevilacqua (3)) identify a deep learning approach based on CNNs, but are based
on exercises rather than common activities. Their dataset was derived from specially placed sensors
on the lower half of the body, which makes it less applicable to a large user base, as most people just
have smartphones or smart watches.

Weiss (5) opted to use five distinct algorithms: Random Forests, J48 decision trees, B3 instance-based
learning, Naive Bayes, and multi-layer perceptron. Using these algorithms, Weiss was able to obtain
an overall accuracy rate of 25.3% with the phone accelerometer data, and 64% accuracy with the
watch accelerometer data.

3 Dataset and Features

We are using a brand new WISDM dataset (5)), released this year by Fordham University which can
be downloaded online here. The dataset was created from 15 different participants, each of whom
wore a smartwatch on their left wrist, and either a Google Nexus or Samsung Galaxy S5 in their
pocket. The phone was placed in their right pocket upright, with the screen of the phone facing away
from the body. Each participant performed 18 different activities with each device separately for 4
consecutive minutes each. The full list of activities were: walking, jogging, climbing stairs, sitting,
standing, typing, brushing teeth, eating soup, eating chips, eating pasta, drinking from a cup, eating
a sandwich, kicking a soccer ball, playing catch with a tennis ball, dribbling a basketball, writing,
clapping, and folding clothes.

What makes this dataset fairly unique is that the activities go beyond just motion activities; for
example, the dataset contains categories like "brushing teeth" and "eating chips". This gives it
applications beyond most other datasets which focus on exercise or motion only.

The gyroscope and accelerometer tri-axial data was sampled at a rate of 20Hz, where each sample
contains scalar data about the devices current position in space. Each sample is of the form:

[Participant ID (beginning at 1600)], [timestamp (unix-based)], [x value], [y value], [z value] as
shown below in Figure 2.

1600,A,252207666810782,-0.36476135,8.793503,1.0550842;

Figure 1: Example of accelerometer/gyroscope data
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Figure 2: Phone Accel/Gyro Figure 3: Phone Accel/Gyro
Data when Jogging Data when eating sandwich

Since the dataset has a hierarchical file structure, (each participant has 18 folders for each activity)
we first aggregated the data for each participant together into 15 different data-frames. Next, we
merged all phone and watch data from each participant together. We then created sliding windows of
approximately 2 seconds with an equivalent stride to slice the sensor data into different parts. Finally,
we combined the separated windows for both the phone and watch data.


http://www.cis.fordham.edu/wisdm/dataset.php

4 Methodology

More traditional algorithms have been applied to activity recognition, however as previously men-
tioned this requires an extensive amount of modelling and creating higher level features to represent
the problem, and oftentimes this may not be an accurate representation of the problem leading
to inaccuracies at prediction time. CNN/LSTM have the capacity to learn temporal dependencies
between outputs from the phone/watch sensors, therefore we have opted to implement both an LSTM
and CNN architecture for our task. We are using Weiss’ (3) best performing algorithm as our baseline
since he also trained his models on the WISDM dataset.

5 Model Architecture

Our Convolutional Neural Network consists of 4 Conv1D layers, accompanied with Batch Normal-
ization and Max Pooling layers and lastly a flatten and two dense layers as shown below:

Model: "sequential 12"

Layer (type) Output Shape Param #
convld_45 (Conv1D) (None, 98, 2) 38

batch_normalization_45 (Batc (None, 98, 2) 8

max_poolingld_45 (MaxPooling (None, 49, 2) 0

convid_46 (ConviD) (None, 47, 4) 28

batch_normalization_46 (Batc (None, 47, 4) 16

max_poolingld_46 (MaxPooling (None, 23, 4) 0

convid_47 (ConviD) (None, 21, 8) 104

batch_normalization_47 (Batc (None, 21, 8) 32

max_poolingld_47 (MaxPooling (None, 10, 8) 0

convid_48 (ConviD) (None, 8, 16) 200

batch_normalization_48 (Batc (None, 8, 16) 64

max_poolingld_48 (MaxPooling (None, 4, 16) )

flatten_12 (Flatten) (None, 64) [ Layer (type) Output Shape Param #
dense_23 (Dense) (None, 32) 2080 lstm_5 (LSTM) (None, 50, 64) 18176
dense_24 (Dense) (None, 18) 594 lstm_6 (LSTM) (None, 64) 33024
Total params: 3,364 dense_3 (Dense) (None, 18) 1170

Trainable params: 3,304
Non-trainable params: 60

Figure 5: Stacked-LSTM Model Struc-
Figure 4: 4ConvLayer Neural Network ture
Architecture

For the LSTM structure, we decided to use a stacked-LSTM structure. We chose to stack multiple
recurrent states with multiple memory cells because it allows the model to determine more complex
abstractions from the input data. Specifically, we have two LSTM layers, followed by a Dense Layer.

Since we are performing classification on our data, the Cross Entropy Loss is a natural loss function
to use. For classification problems it is equivalent to the Maximum Likelihood Estimation (MLE).
The multi-class Cross Entropy Loss is defined as follows:

N
J = N(; yi — log(9i))
where y; is the predicted label for the ith training example, y; is the true desired label, and IV is the
number of training examples.

6 Experiments/Results/Discussion

Comparing LSTM and CNN on both watch and phone data sets, we see that the LSTM performs
better than the CNN with 79% vs. 72% accuracy and 74% vs. 50% for each respective dataset.
The resulting confusion matrices show that the models on the phone dataset struggle to differentiate
between activities that require similar hand movements such as eating chips versus eating soup.
Similarly, the models had a difficult time distinguishing between catching, kicking, and dribbling on
the watch dataset likely because the hand movements aren’t what most distinguishes these activities.



It’s worth noting that despite these difficulties, the model still manages to greatly improve upon our
baseline from Weiss. Additionally, if we were to group all eating activities together, the accuracy of
both models would be much higher.

Phone Results with CNN for Test Set
Phone Results with LSTM for Test Set

precision recall fl-score support
precision recall fl-score support
catch 0.57 0.48 0.52 644
catch 0.66 0.68 0.67 534 chips 0.26 0.37 0.31 372
chips 0.61 0.74 0.67 427 clapping 0.47 0.47 0.47 545
clapping 0.66 0.71 0.69 501 dribbling 0.54 0.62 0.58 462
dribbling 0.77 0.68 0.72 610 drinking 0.16 0.42 0.23 208
d?q(‘;mg 0.68 0.58 0.62 628 folding 0.43 0.53 0.47 427
olding 0.64 0.69 0.67 493 ; ;
fabe  em o s em
kicking 0.72 0.72 0.72 557 * - :
pasta 0.32 0.37 0.34 392
pasta 0.60 0.72 0.65 386 X
sandwich 0.68 0.62 0.65 552 sandwich 0.30 0.32 0.31 473
sitting 0.76 0.77 0.77 503 sitting 0.47 0.40 0.43 606
soup 0.66 0.65 0.66 532 soup 0.44 0.28 0.34 829
stairs 0.86 0.92 0.89 501 stairs 0.73 0.64 0.68 611
standing 0.81 0.73 0.77 566 standing 0.70 0.54 0.61 674
teeth 0.71 0.70 0.71 503 teeth 0.47 0.46 0.47 511
typing 0.81 0.75 0.78 531 typing 0.41 0.46 0.43 438
walking 0.95 0.94 0.95 575 walking 0.84 0.80 0.82 594
writing 0.76 0.81 0.78 454 writing 0.48 0.42 0.45 555
accuracy 0.74 9382
macro avg 0.74 0.74 0.74 09382 accuracy 0.50 9382
weighted avg 0.74 0.74 0.74 9382 macro avg 0.50 0.50 0.50 9382
weighted avg 0.53 0.50 0.51 9382
Figure 6: LSTM results for Phone Figure 7: CNN results for Phone
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Figure 8: LSTM loss for Figure 9: CNN loss for Phone
Phone

Phone LSTM Confusion Matrix Phone CNN Confusion Matrix
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Figure 10: LSTM Confusion Matrix for Figure 11: CNN Confusion Matrix for Phone
Phone



Watch Results with LSTM for Test Set

Watch Results with CNN for Test Set

precision recall fl-score support
precision recall fl-score support
catch 0.88 0.85 0.87 820
chips 0.57 0.56 0.56 841 catch .80 0.88 0.84 319
clapping 0.93 0.95 0.94 767 chips 0.41 0.55 0.47 310
dribbling 0.91 0.89 0.90 835 clapping 0.90 0.88 0.89 429
drinking 0.70 0.69 0.69 871 dribbling 0.85 0.88 0.87 393
. drinking 0.50 0.63 0.56 363
folding 0.80 0.76 0.78 903 folding 0.84 0.69 0.76 485
jogging 0.96 0.98 0.97 786 jogging 0.97 0.98 0.97 416
kicking 0.83 0.79 0.81 874 kicking 0.76 0.73 0.75 429
pasta 0.66 0.65 0.66 830 pasta 0.63 0.56 0.59 434
sandwich 0.47 0.53 0.50 743 sandwich 0.36 0.36 0.36 400
sitting 0.76 0.74 0.75 831 sitting g-gg g-% gg; ;ZE{
soup . . .
toer g;é ggg g‘gg 332 stairs 0.82 0.74 0.78 375
. . . . standing 0.73 0.77 0.75 361
standing 0.79 0.81 0.80 829 teeth 0.82 0.88 0.85 369
teeth 0.89 0.90 0.89 874 typing 0.82 0.67 0.74 520
typing 0.79 0.85 0.82 740 walking 0.84 0.92 0.88 371
walking 0.89 0.90 0.89 760 writing 0.75 0.69 0.71 449
writing 0.86 0.82 0.84 897
accuracy 0.72 7279
macro avg 0.73 0.73 0.72 7279
accuracy 0.79 14739 weighted avg 0.73 0.72 0.72 7279
macro avg 0.79 0.79 0.79 14739
weighted avg 0.79 0.79 0.79 14739

Figure 12: LSTM results for Watch Figure 13: CNN results for Watch
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Figure 14: LSTM Confusion Matrix for

Watch Figure 15: CNN Confusion Matrix for Watch

7 Conclusion/Future Work

Weiss (0) intends to release an updated dataset which includes significantly more participants.
Additionally, the set of tasks that each participant will complete will be larger. We intend to improve
upon our results going forward on the expanded WISDM dataset that will be released later. Since the
expanded dataset will also include more IMUs, we will investigate using different combinations of
sensors to perform our learning task.

While our best performing model improved upon Weiss’ results, we believe that with further fine-
tuning of hyper parameters we can continue to improve the prediction accuracy of our approach.
We will experiment with using a combination of the two kinds of networks commonly known as
a Convolutional Recurrent Neural Network (CRNN). It is also worth noting that we have so far
only used impersonal models for our classification task, however we will investigate creating unique
models for each study participant as previous research has shown this approach to be more accurate.

8 Contributions

Derek McCreight and Susana Benavidez contributed equally in the paper, experiments, and code.
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