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Abstract

Recently, learning-based models have enhanced the performance of Single-Image Super-Resolution (SISR).
However, applying SISR successively to each video frame leads to lack of temporal coherency. On the other
hand, Video Super Resolution (VSR) models based on Convolutional Neural Networks (CNNs) outperform
traditional approaches in terms of image quality metrics such as Peak Signal to Noise Ratio (PSNR) and
Structural SIMilarity (SSIM). However, Generative Adversarial Networks (GANs) offer a competitive advan-
tage in terms of being able to mitigate the issue of lack of finer texture details when super-resolving at large
upscaling factors which is usually seen with CNNs. We present iSeeBetter, a novel spatio-temporal approach to
VSR. iSeeBetter seeks to render temporally consistent Super Resolution (SR) videos by extracting spatial and
temporal information from the current and neighboring frames using the concept of Recurrent Back-Projection
Networks (RBPN) as its generator. Further, to improve the "naturality" of the super-resolved image while
eliminating artifacts seen with traditional algorithms, we utilize the discriminator from Super-Resolution
Generative Adversarial Network (SRGAN). Mean Squared Error (MSE) as a primary loss-minimization
objective improves PSNR and SSIM, but these metrics may not capture fine details in the image leading to
misrepresentation of perceptual quality. To address this, we use a four-fold (adversarial, perceptual, MSE and
Total-Variation (TV)) loss function. Our results demonstrate that iSeeBetter offers superior VSR fidelity and
surpasses state-of-the-art performance.

1 Introduction

The goal of Super Resolution (SR) is to enhance a Low Resolution (LR) image to a Higher Resolution (HR) image by filling
in missing fine-grained details in the LR image. This domain can be divided into three main areas: Single Image-SR (SISR)
(1), (2), (3), (4), Multi Image SR (MISR) (5), (6) and Video SR (VSR) (7), (8), (9), (10), (11). The idea behind SISR is to to
super-resolve an LR frame LRt, independently of other frames in the video sequence. While this technique takes into account
spatial information, it fails to exploit the temporal details inherent in a video sequence. MISR seeks to address just that - it
utilizes the missing details available from neighboring frames and fuses them for super-resolving LRt. After spatially aligning
frames, missing details are extracted by separating differences between the aligned frames from missing details observed only in
one or some of the frames. However, in MISR, the alignment of the frames is done without any concern for temporal smoothness,
while in VSR, frames are typically aligned in temporal smooth order.

Traditional VSR methods upscale based on a single degradation model (usually bicubic interpolation), followed by reconstruction.
This is sub-optimal and adds computational complexity (12). Recently, learning-based models based on Convolutional Neural
Networks (CNNs) have outperformed traditional approaches in terms of widely-accepted image reconstruction metrics such as
Peak Signal to Noise Ratio (PSNR) and Structural SIMilarity (SSIM). A crucial aspect of an effective VSR system is its ability
to handle motion sequences since those are often important components of videos (7), (13).

The proposed method, iSeeBetter, is inspired by Recurrent Back-Projection Networks (RBPNs) (10), which utilize “back-
projection” as their underpinning approach which was originally introduced in (14), (15). The basic concept behind back-
projection is to iteratively calculate residual images as reconstruction error between a target image and a set of a neighboring
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images. The residuals are then back-projected to the target image for improving super-resolution accuracy. The multiple residuals
enable representing subtle and significant differences between the target frame and other frames and thus exploit temporal
relationships between adjacent frames as shown in Figure 1. This results in superior SR accuracy.

To mitigate the issue of lack of finer texture details when super-resolving at large upscaling factors, which is usually seen with
CNNs (16), iSeeBetter utilizes GANs with a loss function that weighs adversarial loss, perceptual loss (16), Mean Square Error
(MSE)-based loss and Total-Variation (TV) loss (17). Our approach combines the merits of RBPN and SRGAN (16) - it is
based on RBPN as its generator which is complemented by SRGAN’s discriminator architecture. Blending these techniques
yields iSeeBetter, a state-of-the-art system that is able to recover photo-realistic textures and motion-based scenes from heavily
down-sampled videos.

Figure 1: Adjacent frame similarity

Our contributions include the following key innovations.

Combining the state-of-the-art in SR: We propose a model that leverages two superior SR techniques - RBPN and SRGAN.
RBPN enables iSeeBetter to extract details from neighboring frames, while the generator-discriminator architecture pushes
iSeeBetter to generate more realistic frames and eliminate artifacts.

"Optimizing" the loss function: Minimizing MSE encourages finding pixel-wise averages of plausible solutions which are
typically overly-smooth and thus have poor perceptual quality (18) (19) (20) (21). To address this, we adopt a four-fold
(adversarial, perceptual, MSE and TV) loss for superior results.

Extended evaluation protocol: To evaluate iSeeBetter, we used standard datasets: Vimeo90K (22), Vid4 (23) and SPMCS (8).
To expand the spectrum of data diversity, we wrote scripts to collect additional data from YouTube and augment our dataset to
170,000 clips.

User-friendly script infrastructure: We built several tools to download and structure datasets, visualize temporal profiles and
run benchmarks to be able to iterate on different models quickly. Further, we also built a video-to-frames tool to enable directly
input videos to iSeeBetter, rather than frames.

2 Related work

Learning-based methods have emerged as superior VSR techniques compared to traditional statistical methods. We thus focus
our discussion in this section solely on learning-based methods that are trained end-to-end.

Deep VSR can be primarily divided into three types based on the approach to preserving temporal information.

(a) Temporal Concatenation. The most popular approach to retain temporal information in VSR is by concatenating the frames
as in (24), (7), (11), (25). Essentially, this approach can be seen as an extension of SISR to accept multiple input images.

(b) Recurrent Networks. A many-to-one architecture is used in (26), (8) where a sequence of LR frames is mapped to a single
target HR frame. A many-to-many RNN has recently been used in VSR by (9), to map the current LR frame and previous HR
estimate to the target HR frame.

(c) Optical Flow-Based Methods. To reduce unwanted flickering artifacts in the output frames (17), (9) proposed a method that
utilizes a network that is trained on estimating optical flow along with the SR network. Optical flow methods allow estimation of
the trajectories of a moving objects, thereby assisting in VSR.
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3 Datasets

To train iSeeBetter, we amalgamated diverse datasets with differing video lengths, resolutions, motion sequences and number of
clips. Table 1 presents a summary of the datasets used. When training our model, we generated the corresponding LR frame for
each HR input frame by performing 4× down-sampling using bicubic interpolation. To extend our dataset further, we wrote
scripts to collect additional data from YouTube. The dataset was shuffled for training and testing. Our training/validation/test
split was 80%/10%/10%.

Dataset Resolution # of clips # of frames/clip # of frames

Vimeo90K 448 × 256 13,100 7 91,701

SPMCS 240 × 135 30 31 930

Vid4 (720 × 576 × 3), (704 × 576 × 3), (720 × 480 × 3), (720 × 480 × 3) 4 41, 34, 49, 47 684

Augmented 960 × 720 7,000 110 77,000

Total - 46,034 - 170,315

Table 1. Datasets used for training and evaluation

4 Methods

4.1 Implementation2

Figure 2: Overview of iSeeBetter

Figure 2 shows the iSeeBetter architecture which uses RBPN (10) and SRGAN (16) as its generator and discriminator respectively.
RBPN has two approaches that extract missing details from different sources, namely SISR and MISR. Figure 3 shows the
horizontal flow (blue arrows in Figure 2) that enlarges LRt using SISR. Figure 4 shows the vertical flow (red arrows in Figure 2)
which is based on MISR that computes residual features from a pair of LRt to neighbor frames (LRt−1, ..., LRt−n) and the flow
maps (Ft−1, ..., Ft−n). At each projection step, RBPN observes the missing details from LRt and extracts residual features from
neighboring frames to recover details. Within the projection models, RBPN utilizes a recurrent encoder-decoder mechanism for
incorporating details extracted in SISR and MISR through back-projection.
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2Code and samples for the implementation are available at github.com/amanchadha/iSeeBetter
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Figure 5: Discriminator Architecture from SRGAN (16). The discriminator uses Leaky ReLUs for computing its activations.

4.2 Loss functions

To evaluate the quality of an image, a commonly used loss function is MSE which aims to improve the PSNR of an image
(28). While optimizing MSE during training improves PSNR and SSIM, these metrics may not capture fine details in the image
leading to misrepresentation of perceptual quality and can cause the resulting video frames to be too smooth (29). In a series of
experiments, it was found that even manually distorted images still had an MSE score comparable to the original image (30).

To address this, we use a four-fold (adversarial, perceptual, MSE and TV) loss. (19) introduced a new loss function called
perceptual loss, which relies on features extracted from a pre-trained VGG network instead of low-level pixel-wise error measures.
Per (16), we use adversarial loss along with content loss which focuses on perceptual similarity instead of similarity in pixel
space to limit model “fantasy”. Further, we use a de-noising function called TV loss (19). We weigh these losses together as a
final evaluation standard for training iSeeBetter.

We define our loss function for each frame as follows. The total loss of a sample is the average of all frames.

LossGθ
G

(t) =

α×MSE
(
Iestt , IHRt

)
−β × log (DθD (Iest))

+ γ × PercepLoss
(
Iestt , IHRt

)
+ δ × TV Loss

(
Iestt , IHRt

) (1)

LossDθ
D

(t) = 1−DθD (I
HR
t ) +DθD (I

est
t ) (2)

5 Results

To train the model, we used the Amazon EC2 P3.2xLarge instance with an NVIDIA Tesla V100 GPU with 16GB VRAM, 8
vCPUs and 61GB of host memory. We used the hyperparameters from RBPN and SRGAN. Table 2 and 3 compare iSeeBetter
with six state-of-the-art VSR algorithms.
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Dataset Clip Name Flow Bicubic DBPN (2) B123 + T (31) DRDVSR (8) FRVSR (9) VSR-DUF (11) RBPN/6-PF (10) iSeeBetter

Vid4

Calendar 1.14 19.82/0.554 22.19/0.714 21.66/0.704 22.18/0.746 - 24.09/0.813 23.99/0.807 24.13/0.817

City 1.63 24.93/0.586 26.01/0.684 26.45/0.720 26.98/0.755 - 28.26/0.833 27.73/0.803 28.34/0.841

Foliage 1.48 23.42/0.575 24.67/0.662 24.98/0.698 25.42/0.720 - 26.38/0.771 26.22/0.757 26.27/0.773

Walk 1.44 26.03/0.802 28.61/0.870 28.26/0.859 28.92/0.875 - 30.50/0.912 30.70/0.909 30.68/0.908

Vimeo90K Fast Motion 8.30 34.05/0.902 37.46/0.944 - - - 37.49/0.949 40.03/0.960 40.17/0.971

Average 1.42 23.53/0.629 25.37/0.737 25.34/0.745 25.88/0.774 26.69/0.822 27.31/0.832 27.12/0.818 27.36/0.835

Table 2. PSNR/SSIM evaluation of state-of-the-art VSR algorithms using Vid4 and Vimeo90K for 4×. Bold numbers indicate best performance.

Dataset Clip Name VSR-DUF (11) iSeeBetter Ground Truth

Vid4 Calendar

SPMCS Pagoda

Vimeo-90k Motion

Table 3. Visually inspecting examples from Vid4, SPMCS and Vimeo-90k comparing RBPN and iSeeBetter. We chose VSR-DUF for comparison because it was the state-of-the-art at the time of publication. Top
row: fine-grained textual features that help with readability; middle row: intricate high-frequency image details; bottom row: camera panning motion.

6 Conclusion

We proposed iSeeBetter, a novel spatio-temporal approach to VSR that uses recurrent-generative back-projection networks.
iSeeBetter couples the virtues of RBPN and SRGAN. RBPN enables iSeeBetter to generate superior SR images by combining
spatial and temporal information from the input and neighboring frames. In addition, SRGAN’s discriminator architecture fosters
generation of photo-realistic frames. We used a four-fold loss function that helps emphasize perceptual quality. Further, we
proposed a new evaluation protocol for video SR by collating diverse datasets. With extensive experiments, we assessed the role
played by various design choices in the ultimate performance of iSeeBetter, and demonstrate that on a vast majority of test video
sequences, iSeeBetter shows better results compared to the state-of-the-art VSR systems.

7 Error Analysis

Table 4 takes a deeper look into the Walk scene from Vid4 where iSeeBetter showed room for improvement. We noticed that the
scene had a very different composition compared to other Vid4 scenes - it consists of 10+ faces which is in stark contrast to the
other scenes which mostly consist of non-human imagery.

RBPN/6-PF (11) iSeeBetter Ground Truth

Table 4. Investigating the characteristics of the Walk scene from Vid4 to understand what is leading RBPN to perform better than iSeeBetter.

8 Future Work

To improve iSeeBetter, a couple of ideas come to mind. First, train iSeeBetter with more faces to improve performance in
scenes containing humans. This is especially important if the intended application is VSR for human-centric scenes such as for
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high-resolution TVs. Second, in visual imagery, most of the attention is on the foreground which typically includes humans,
objects etc. To improve perceptual quality, we can segment the foreground and background, and make iSeeBetter perform
"intelligent VSR" by adopting different policies for the foreground and background. Third, another way to further improve
iSeeBetter would be to make it assign weights to the adjacent frames (for e.g., adjacent frames from a different scene can be
weighed lower, compared to frames from the same scene) - à la the concept of attention in NLP, but applied to VSR.
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