Food Macro Ratio Calculator

Dongze Li*
Department of Computer Science
Stanford University
lidongze@stanford.edu

Abstract

Food classification problems have become popular for the last few years. Food
calorie calculation based on food images has also become an interesting topic
since it is crucial for keeping track of a healthy diet and staying fit in general.
In my project, I aim to solve the problem of estimating and calculating calories
intake by introducing an end-to-end approach to directly predict the macro ratio
of carbohydrates, fat and protein instead of doing traditional food classification. I
experimented on VGG16 and InceptionV3 architecture and my final model settles
on InceptionV3. I trained the model using 10,000 images from web crawling
and the labels are generated by a simple calculation after getting the nutrient
information from websites. I have achieved 0.0043 for mean squared error loss
for training set and it proves that the end-to-end approach for calculating macro-
nutrient information also works without specific food classification and volume
measurement.

1 Introduction

With the increasing health awareness among modern people, food-intake estimation and dietary
assessment have also become a main concern in our daily lives. People want to know how much
calories they take in on a daily basis. However, due to the fact that not all macro-nutrient information
are available when people dine out and that making food at home requires a significant commitment
of time and certain culinary skills, keeping track of a healthy diet have presented some difficulties,
especially for people who regularly work out and need a rigid dietary control. The food macro ratio
calculator provides a generic solution by calculating the ratio of the three basic macro-nutrients:
carbohydrates, protein, and fat. The input of my training model are food images which may or may
not contain noises. I then used inceptionV3 convolutional neural network as a pre-trained baseline
model and used softmax regression layer to output a predicted ratio vector which contains three ratios.
This ratio can later be used for calories calculation if the user puts in the weight of the food.

2 Related Works

During investigation phase, I saw many implementations related to the food classification and some
of them aim for providing calories estimation using image segmentation along with multi-label food
classification. They include but not limited to:

1. Food recognition and leftover estimation for daily diet monitoring. [1]

*Use footnote for providing further information about author (Ibpage, alternative address)—not for acknowl-
edging funding agencies.

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

2. Highly Accurate Food/Non-Food Image Classification Based on a Deep Convolutional Neural
Network [2]

3. Food classification with Deep Learning in Keras/Tensorflow [3]

4. DeepFood: Deep Learning-Based Food Image Recognition for Computer-Aided Dietary Assess-
ment [4]

5. Deep Learning Assisted Macro-nutrient Estimation For Feedforward-Feedback Control In Artificial
Pancreas Systems [5]

Unfortunately, none of them provides a generic solution since there are endless number of food
classes and similar food can take multiple forms and can appear to be very different. The most
common data set for food classification is Food-101 which contains 1000 images for each of the
101 most common food. I originally experimented on this and found the complexities of the project
sky-rocketed since in order to make accurate calories estimation, I would need to make accurate food
classification based on more food classes hence more data. Obviously, 101 food classes wouldn’t be
enough and large data set would also make it harder to train and iterate. Although most of the current
studies regarding the food classification as well as calories estimation use this kind of traditional
approach, I decided to go for another approach due to the complexity of the food classification. I
used InceptionV3 baseline model with additional convoluional layers along with softmax regression
layers to directly predict the macro ratio of the food within the image.

3 Data Set and Features

Due to the fact that all of the data set for food related deep learning task are prepared specifically for
food classification problems, there is no existing data set can be directly used by this project. I tried
to use food-101 data set for initial experiments and found labeling data by hand was rather tedious
and inefficient. Later on, I discovered that there were thousands of images posted on food recipes
websites. Therefore, I ended up writing a web crawler tool with alternating proxies to download
10,000 images from those websites along with all of their ingredients and macro-nutrients information.
The current data set has around 9,000 images for training set, 500 images for validation set, and
another 500 images for test set to follow the 90/5/5 split. Moreover, I used the image augmentation
such as flipping, cropping and mirroring for all of the training images. All images used for training
had a resolution of 300x300x3 and with normalization by dividing the RGB values by 255.

4 Methods

4.1 Deep Convolutional Neural Networks

Convolutional neural network is great for image analysis as it can learn complex image features. In
this project, I used the InceptionV3 as a baseline model to pre-train my training data. After that, I
added a few more layers along with softmax regression in the end.

4.2 Mean Square Error Loss Function

Considering that Mean Square Error (MSE) is one of the most commonly used regression loss
function which calculates the sum of squared distances between target variable and predicted values,
I used MSE function for loss function as well as one of the metrics. By minimizing MSE, the model
can gradually learn the predicted ratio as expected.

4.3 Adam Optimizer with Decayed Learning Rate

Adam optimizer combines the best properties of the AdaGrad and RMSProp algorithms to provide an
optimization algorithm that can handle sparse gradients on noisy problems. During the experiments,
I did find that the MSE loss tends to go back and forth if the learning rate is kept at the same value
for the entire training. Therefore, I improved the performance by using decayed learning rate which
gradually decreases based on the number of epoch. As a result, I gained a very promising result from
the model.

S Experiments/Results/Discussion

5.1 Experiments with Different Baseline Models

Initially, I tried lots of different pre-trained models in order to see which one worked the best for
the current problem set. After experimenting with many architectures such as VGG16, ResNet,
InceptionV3, and DenseNet, I concluded that InceptionV3 was more suitable for this problem, as it
brought out the best performance with the lowest mean squared error loss value.

5.2 [Experiments with Adding More Convultional Layers

Besides my experiments with different baseline models, I also tried to add a few more convolutional
layers along with the pooling layers on top of the baseline model. As in the case that deeper network
would have a greater chance of success, likewise, by adding a few more layers to the model, I have
improved the performance substantially by 5%.

5.3 Experiments with Batch-size for the Training Model

Making the batch size too big would slow down the learning process dramatically, while choosing too
small of a batch size was also not ideal since it could potentially affect the final performance. Thus, I
decided that a mini-batch size of 32 might be the best option. This also echoes the recommendation
by Yoshua Bengio in his "Practical Recommendations for Gradient-based Training of Deep Architec-
tures," who argues that a mini-batch size of 32 is a good default value for starting the training.[6]
I experimented with batch-size of 64, 16 and 32, and compared the results altogether. The batch
size of 32 still turned out to be the best option for relatively fast training without compromising the
performance.

0.0400
00425

00400 00373

0.0375 0.0350
00350 00325

00325 0.0300

0.0300 00275

0.0275 20250

0.0250

00225
0 5 10 15 20 5 30 0 5 10 15 20 5 30

(a) MSE Loss with batch size 64 (b) MSE Loss with batch size 16

0.0400

0.0375

0.0350

0.0325

0.0300

00275

00250

0.0225

o 5 10 15 20 5 30

(c) MSE Loss with batch size 32

5.4 Experiments with Different Learning Rates

I first tried a default value of 0.0001 along with Adam optimizer just to get things started; the
performance was satisfactory, although I found the MSE loss tended to jump back and forth during
the training. I also tried to decrease the learning rate to 0.00005 and 0.00001, which made the learning
slower and thus would not be ideal for the training at early stages. Later on I wrote a function to
calculate the decayed learning rate based on the number of epochs I was running on during the
training. The metric performed better, and more importantly, it did not compromise much training
time as in the case of using the small learning rate all the time.

5.5 Experiments with Trainable/Non-Trainable Pre-trained Baseline Model

Initially, I kept all of the weights within the pre-trained model and used them as feature extractors
for the training. Afterwards, I tried to make weights trainable for some of the later layers within
InceptionV3 model and the performance improved dramatically. The final loss dropped from 0.0253
to 0.0068, and the MSE dropped from 0.0228 to 0.0043. The mean absolute error (MAE) also dropped
from 0.1120 to 0.0509. Most importantly, the performance on the validation data also improved a lot.
The validation loss dropped from 0.1354 to 0.03. The MSE of validation set dropped from 0.1329 to
0.0275. The MAE of validation set dropped from 0.2984 to 0.1238. The following graphs illustrate
the performance improvement on the trainable baseline model:

0.040

0.0400
0.035
0.0375
0.030
0.0350
0.025
0.0325
0.020
0.0300

0.015
00275

00250 0.010

00225 0.005

(a) Picture 1 (b) Picture 2

Although the average training time per epoch became longer as I trained more parameters than
non-trainable baseline models, it would still be beneficial for the overall result.

5.6 Experiments with Adding Food Classification as Multi-task Learning for Performance
Booster

I briefly tried adding food classification as multi-task learning by using another data set of 100 images
for experiments for ratio prediction along with multi-label classification. Because I did not have
existing data set on the internet, I would have to label the data by hand, which cost a great amount
of time and thereby became a major blocker for my task. Furthermore, usinl g only 100 images for
training was not ideal and the accuracy loss for food classification would not converge regardless of
the result of the ratio prediction. The main issue with the current approach was that doing multi-label
classification without specifically using YOLO algorithm for object detection would be an extremely
difficult learning task, and hence could not boost the performance of the original ratio prediction.
Therefore, in the future I plan to write an automated system to label the corresponding food class
based on the food ingredients, and in the meanwhile add the YOLO algorithm for object detection so
as to give it another try.

6 Conclusion

1. Compared with many other architectures like VGG16, ResNet, DenseNet, InceptionV3 is more
suitable for calculating the macro-nutrient information of food.

2. T achieved 0.0043 for mean squared error loss for training set and 0.0275 for test set, which means
that there is a slight overfit on the training set. Thus, I might need more labelled data in the future.

3. Trainable layers within baseline model could be a game changer for specific task.

4. End-to-end approaches may be a good option especially when the data is limited and the problem
is too complex to generalize.

5. Decayed learning rate is usually good for both performance and training iterations since it does not
compromise too much training time.

6. A systematic way to get more clean labelled data is always beneficial.

7 Future Work

In terms of the future work of my project, first I need to include more labelled data, which should be
the image data set where each image includes two sets of labels—one label for multi-label classification
and another one for macro-nutrients ratio information.

Second, I plan to do more experiments on multi-task learning to predict the macro-nutrient ratio
along with the food classification. The food classification would be multi-label classification which
might require YOLO algorithm to scan through the entire image.

Next, [would also consider training another model for safety net so as to detect whether the given
image input is a food image. This approach is very important for real-world applications.

Finally, I would try to train deeper convolutional neural networks by using residual blocks.

8 Contributions

I got a lot of help from Huizi as my project TA for both ideas and project directions. Other than that,
I am playing solo the entire time.

9 References

[1] Ciocca G., Napoletano P., Schettini R. (2015) Food Recognition and Leftover Estimation for Daily Diet
Monitoring. In: Murino V., Puppo E., Sona D., Cristani M., Sansone C. (eds) New Trends in Image Analysis
and Processing — ICIAP 2015 Workshops. ICIAP 2015. Lecture Notes in Computer Science, vol 9281. Springer,
Cham

[2] Kagaya H., Aizawa K. (2015) Highly Accurate Food/Non-Food Image Classification Based on a Deep
Convolutional Neural Network. In: Murino V., Puppo E., Sona D., Cristani M., Sansone C. (eds) New Trends in
Image Analysis and Processing — ICIAP 2015 Workshops. ICIAP 2015. Lecture Notes in Computer Science, vol
9281. Springer, Cham

[3] https://github.com/stratospark/food-101-keras

[4] Liu C., Cao Y., Luo Y., Chen G., Vokkarane V., Ma Y. (2016) DeepFood: Deep Learning-Based Food Image
Recognition for Computer-Aided Dietary Assessment. In: Chang C., Chiari L., Cao Y., Jin H., Mokhtari M.,
Aloulou H. (eds) Inclusive Smart Cities and Digital Health. ICOST 2016. Lecture Notes in Computer Science,
vol 9677. Springer, Cham

[5] A Chakrabarty, F J. Doyle, and E Dassau, "Deep Learning Assisted Macronutrient Estimation For
Feedforward-Feedback Control In Artificial Pancreas Systems" in 2018 Annual American Control Confer-
ence on Milwaukee, WI, USA, IEEE, August 2018

[6] Yoshua Bengio, "Practical recommendations for gradient-based training of deep architectures", 2012

	Introduction
	Related Works
	Data Set and Features
	 Methods
	Deep Convolutional Neural Networks
	Mean Square Error Loss Function
	Adam Optimizer with Decayed Learning Rate

	Experiments/Results/Discussion
	Experiments with Different Baseline Models
	Experiments with Adding More Convultional Layers
	Experiments with Batch-size for the Training Model
	Experiments with Different Learning Rates
	Experiments with Trainable/Non-Trainable Pre-trained Baseline Model
	Experiments with Adding Food Classification as Multi-task Learning for Performance Booster

	Conclusion
	Future Work
	Contributions
	References

