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Abstract

| propose a novel application of deep partial convolutional networks to take topographical
maps with missing data areas and interpolate with meaningful context derived from
surrounding data. | will be applying techniques from “Inpainting” algorithms, as well as
enhancing the results with Single Image Super Resolution (SISR) algorithms. The goal of this
project will be to show that physical data collection on system can be reduced, while
maintaining a high fidelity to the ground truth mapping.

Introduction

In the world of data storage, 3D NAND is at the
forefront of memory technology, offering higher bit
densities, faster write speeds, and lower power
consumption. However, this architecture brings
with it a myriad of new challenges. To help
manufacturers, meet yield targets, metrology
equipment vendors need to be able to inspect
wafers implementing 3D pattern processes, and
feedback information on key defects of interest to
manufacturers. The manufacturer can then use this
information to correct their process and improve
yields.

One of the biggest problems for equipment
manufacturers has been keeping the top surface of
the wafer in focus. Most wafer inspection systems
rely on an optical autofocus subsystem to keep the
wafer in focus for the system sensor. However,
certain autofocus system (AF) architectures are
susceptible to process variation which can cause a
delta between the AF measured best focus, and the
inspection systems best focus. This can lead to a
loss of sensitivity, which reduces the effectiveness
of the inspection system.

A method which has been devised to work around
this issue is to create a topographical map prior to
inspection of the wafer. However, this is a time-
consuming process that can increase the total

inspection time by up to a factor of two.
Empirically, it has been found that not all the wafer
needs to be mapped, and that interpolation of data
points can help reduce the wafer mapping time.
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{(Figure 1. Sample Wafer Topography Map)

In this project, | will take existing full wafer maps,
remove regions of data, and then interpolate the
missing data to show that we can effectively reduce
the data collection time, and rely on this
interpolation method to improve customer
throughput. Additionally, monitoring output layers
of the network could provide additional process
change information over time.

Related Work

In-painting has become a staple of image
processing. This is a task for which CNN’s are
uniquely suited. There have been a number of
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methods for in-painting typically applied to
photographs, or other images. Some of the earlier
works focused on fixed fill areas, such as “Context
Encoders” [1] which would only work to fill a 64x64
pixel box in the center of the image. Other methods
such as “Generative Inpainting” [2] could handle
irregular holes of missing data, however this
method typically requires a larger training set than
what was available.

The architecture developed by Guilin L, et al. in
Image Inpainting for Irregular Holes Using Partial
Convolutions had the advantages that it could
handle larger missing areas, and once trained
should produce afilled image in a single pass.
There are also of course non-learning methods
such as patch matching which employ a statistical
matching algorithm [6].

Challenges

One of the main challenges of this project will be
the lack of varying data sets. Due to the
manufacturer's tendency to protect their data, only
a limited number of maps will be available for
training and testing. The data set will come from a
few dozen mappings, on a handful of different
wafers types, collected over past weeks at several
customer sites.

Additionally, the original data set is rather larger at
about 12MB per map which would be difficult and
slow to work with. However, there is a significant
amount of superfluous information, and some
redundancies which could be filtered out. The data
sets will be reduced to (x, y, z) triplets. Converting
these triplets into an image of 512x512, maintains a
minimum amount of fidelity needed for the final
application. Given a standard 300mm radius wafer
each pixel will effectively map a 586umx586um
area of the map. This would be enough for a typical
application, but by upscaling post the interpolation
step, we can ensure we can at least meet the
Nyquist sampling criteria.

The data sets will also have to be preprocessed
with various steps including: fitting to a standard
mesh grid, normalizing, and discretizing. A
discretization of the topography into 0-255 step will
maintain enough resolution given the typical range
of focus deviation seen in typical maps. (typical

topography range is less than 6um, resulting in a
resolution of ~23nm which is sufficient for the final
application of the map.

Data Augmentation

Given the symmetrical nature of the wafer maps,
several data augmentation techniques could be
leveraged, including rotation, mirroring, and
blurring. Specifically, the original images were
rotated by 90°, 180°, and 270°. These augmentation
techniques are valid use cases as customer may
choose to inspect the wafers in any of those
orientations. Additionally, die typically have
rectangular structures, and these rotations
maintain the context of that pattern.

Blurring of the images is analogous to a lack of
sensitivity in the mapping, which is also a
reasonable approximation of issues that can arise
from real-time mapping on mechanical systems. In
this case the “blurring” would be analogous to a
delay in z-stage response, as the z-coordinate
information is being directly converted to pixel
intensity. (Blurring was produced by convolving the
images with a 4x4 filter)
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(Figure 2: Enhanced Data Set Examples)

Methods 1 - Interpolation Through Partial
Convolutions

For this project | have elected to apply a technique
developed by Guilin Liu, et. Al. from the NVIDIA
corporation [4]. This is a modification of the
standard UNet architecture but using partial
convolutions and a mask updating step.

Total params: 32,876,128
Trainable params: 32,865,248
Non-trainable params: 10,880
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(Figure 3: Architecture of Partial Conv)

The number of layers were not modified since the
data was pre-processed in such a way that it was
compatible with the existing architecture. However,
the learning rate of 0.0002 was increased to 0.0005
given the fact that the areas were relatively larger,
but the context was simpler to encode given the
lower spatial frequencies of the maps. The loss
function, which is a combination of 6 sub-loss
functions, was also modified to more heavily
weight the perceptual context given the relatively
large mask patches. (See appendix for individual
loss functions)

Liotar = Lyaiia + 6 Lpoie +0.05 Lpercept +
120 (Lstytepye + Lstyiecomp ) + 0-1 Lev

This architecture will recurrently update a mask as
well as the image through each layer, reducing the
size of the mask until its removed. Per [5], the
imaged is updated by the following convolutional
filter:

sum(1)
x' = W' (xom) sum(M)

0, Otherwise

+ b,if sum(M) >0

Where O is an element-wise multiplication, and 1
has shape M, but all elements = 1. Additionally, the
mask is updated by the following expression:

/ {1, if sum(M) >0
m' = .
0, otherwise

To apply this network, | first converted the maps to
images, and resized them to work with the existing

poch 1/2
500/500 [nn-

network. The original data consisted of column
vectors with x stage position, y stage position, and z
height data. Because of the way the data was
collected, there were areas of high density, and low
density. | used a grid fit gradient method to fit the
available data and interpolate between the missing
data. This produced a uniform set of triplets.
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(Figure 4: Raw Data and Pre-process Interpolation)

| then discretized the z height data into pixel
intensity values ranging from 0-255. The data from
this channel was then copied twice to create a 3-
channelimage with an 8-bit pixel depth. The
network, which is based off the VGG-16 CNN, was
originally trained on a subset of the ImageNet
library. I then trained again with my 360 enhanced
data set, with a batch size of 4. Leaving 40 images
for validation, and 40 images for test. | then
generated a mask to identify the areas which
should be interpolated. Given the small data set,
additional training repeats were performed and
there was likely some overfitting of the data. This
could be mitigated with a larger data set if this
method is rolled out.

The CNN then took the context from the unmasked
areas to fill into the mask areas per the previous
description. A more detailed post processing was
done on a handful of generated images, with
comparisons of the interpolated map areas to the
ground truth raw map data.
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Methods 2 - Post Processing Image Upscaling Results and Validation

As a post processing step, | implemented variation During testing, there were issues with mask pattern
of the CNN model described in the paper “Fast and feeding back into the image, although the loss was
Accurate Image Super Resolution by Deep CNN with still relatively low. This appears to be a limitation
Skip Connection and Network in Network” by Jin with this architecture. However, that was mitigated
Yamanaka, et. Al. With an addition pre-processing through extrapolating the images, and apply a pre-
step in before running the image through the interpolation step.

network.
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(Figure 6: Upscaling Network)

Generated Map

The main goal of this step was to attempt to
increase the contrast of the filled in context, as well
as to upscale the image to provide at least a 2x
resolution over the standard AF sampling rate. This
architecture is a bit dated, and simple, but more
than enough in extracting the feature set’s an (Figure 9: Final Interpolation Results)
providing an upscaled image with improved
contrast.

After interpolating the images, they can then be
compared to the ground truth images to calculate

The loss function is a simple mean squared error, the residual errors. For this technique to be usable,
with the addition of the L2 norms for regularization. the errors must be less than the depth of focus of
No change was made to the learning rate of 0.002. the inspection system. That is the difference

With this increase image size, the resultant pixel between the test and ground truth must be less
size translated to 293um at the for a 300mm wafer, than 90nm.

which is 2x smaller than the AF spot size. When
translated back this should provide more than
enough resolution for the system to track without
the pixilation being a limiting factor.

Here | show the ground truth image along side with
the interpolated image, as well as the resulting
residual map (test - truth). The results fall within
(sl (1024x4074) the acceptable limits for implementation of this

interpolation method.

(Figure 7: Upscaling Results)



Stanford University

Z Height (um)

Y Stage Position (um)

Reference Mesh

Z Height (um)

05 x10°

Y Stage Position (um) =1 -1
X Stage Position (um)

(Figure 10: Interpolated vs Ground Truth)
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(Figure 11: Residual Error Plot)
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Conclusion and Future Work

Although the results of this project were successful
in producing usable maps, the time cost to process
the maps does not make the current
implementation of this method viable. To make
this worthy of in-line testing the time for processing
would need to be reduced to less than 1.5min.

Appendix

Complete Loss Function (See pg. 6, 7 of [3] for details)
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However, the images themselves can be a method
of storing the data in a more compact fashion, and
the training weights could be used as a secondary
monitoring metric of the wafer process variation.
The introduction of this type of analysis could be
the starting point for optimizing this interpolation
task, as we’ll as providing more insight into process
variation which could provide additional value to
our customers.

There are several optimizations that remain to be
implemented. For example, the UNet used for
inpainting can be reduced significantly given that
only the original data consists of 1 channel and that
the context is simple and periodic. Additionally, the
upscaling could be integrated into the same
network. These modifications could help to close
the gap in implementing this process, and I hope to
continue this work over the coming months.
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where, Ny,
The total loss Liptq: is the combination of all the above loss functions.

is the number of elements in Icomp.
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