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Goal: Develop a deep learning model that predicts flow from the
subsurface using multi-fidelity data.

Why is it important?
▪ The use of numerical reservoir simulators for the forward simulation

is computationally expensive.
▪ Lots of data required to obtain good accuracy. Utilize cheap ow

fidelity data to reduce cost of training deep earning model.

Introduction Model

Conclusion

▪ Input for low-fidelity DL model: upscaled model (𝒎𝑙), well pressure
settings (𝒙𝑙).

▪ Input for high-fidelity DL model: fine model (𝒎ℎ ), well pressure
settings (𝒙ℎ), low dimensional representation of 𝒎𝑙 , (Ѯ𝑙)

𝒙ℎ << 𝒙𝑙

▪ Low fidelity data: 20000 flow simulations (400 well pressure
settings and 50 geologic realizations). Took 7 hrs.

▪ High fidelity data: 2500 flow simulations (50 well pressure settings
and 50 geologic realizations). Took 41.5 hrs.

▪ Stanford Automatic Differentiation General Purpose Research
Simulator (AD-GPRS) used for flow simulation.

▪ Preprocessing: applied min-max scaling to input and output
separately.

Dataset

▪ Yimin Liu, Meng Tang and Yong Do kim

▪ Stanford CEES.
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High Fidelity Model
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Hyperparameters Value

Learning rate 0.03

Number of epochs 250

Batch size 16

Dropout rate 0.2

Results

▪ Accurate flow prediction using multifidelity data.

▪ Obtained 7 times speed up by using a combination of low and high
fidelity data

▪ Test MAE as low as 68 was obtained.

Future Work

▪ Apply to optimization

▪ Predict water production and injection rate.
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Model Training MAE Dev MAE Test MAE

Low fidelity 77 82 74

High fidelity 65 72 68

Only high fidelity 107 111 115


