Deep Learning Model for Subsurface Flow Prediction
with Multifidelity Data

Yusuf Nasir
nyusuf@stanford.edu
Department of Energy Resources Engineering

Introduction

Goal: Develop a deep learning model that predicts flow from the
subsurface using multi-fidelity data.
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Why is it important? ore
» The use of numerical reservoir simulators for the forward simulation Permeablllty
is computationally expensive. fleld(ml)

» Lots of data required to obtain good accuracy. Utilize cheap ow
fidelity data to reduce cost of training deep earning model.
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= Accurate flow prediction using multifidelity data.

Learning rate 0.03
» Obtained 7 times speed up by using a combination of low and high
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Number of epochs 250
Batch size 16

Dropout rate 0.2 = Test MAE as low as 68 was obtained.

Future Work
Results

= Apply to optimization
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High Fidelity Low Fidelity O Actalg, O Actualq, = Predict water production and injection rate.
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Input for low-fidelity DL model: upscaled model (m;), well pressure
settings (x;).

Input for high-fidelity DL model: fine model (my), well pressure
settings (x;,), low dimensional representation of m;, (3;)
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Low fidelity data: 20000 flow simulations (400 well pressure
settings and 50 geologic realizations). Took 7 hrs.
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