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Model

Motivation
● Chip designers write code in a hardware description language (ex. 

Verilog), which is consumed by computer-aided design tools to realize 
the actual transistors on a chip, as well as their layout

● These CAD tools have a long runtime, owing to their computationally 
expensive algorithms

● As a result, it can take several hours for a designer to get feedback on 
the power consumption and area of their design, making it difficult to 
effectively iterate on designs

● With a deep learning approach, it is possible to predict the area and 
power of a design in a fraction of the time that CAD tools take

Approach
● Representing code as an input to a neural network is nontrivial and will 

greatly influence the accuracy of the neural network
● Some work exists that demonstrate approaches to representing code 

as a vector, but these are only effective for programming languages, not 
hardware description languages

● Instead, our approach converts Verilog code into a graph of logic gates, 
which can be represented as an adjacency matrix and node feature 
matrix to the neural network

● Synopsys DesignWare library, consisting of basic building blocks of digital 
circuits

● Generated the adjacency matrix and node feature matrix for 4569 designs and 
their corresponding power consumption and area values

Model Inputs
● Circuits have a variable number of gates, 

so each graph has a variable number of 
nodes

● Utilize a disjoint union of each graph per 
batch 

Figure 3: Disjoint Union of each graph

● Add constraints (clock speed, etc.) as inputs to the neural network
● Add process technology as inputs
● Train larger, varied networks, with data from real designs

(1): Traditional GCN Layer

Model Training data (4113) Test Data (456)

GraphConv Power: 68%
Area: 65%

Power: 58%
Area: 61%

ARMA Power: 75%
Area: 69%

Power: 63%
Area: 61%

(3): ARMA Layer(2): Skip Layer

Metric
● Percentage of power and area estimates within 20% 
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Runtime
● Synthesis runtime is design size dependent, but inference is constant
● Runtime on 64-bit carry look ahead adder

Figure 1: Example Circuit

Baseline Model
● Consists of GraphConv (gc) layers
● X is node features matrix and Ã is the 

normalized Laplacian matrix
● W, b are trainable parameters
● Activation Function: ReLU

Figure 2: Adjacency and Node Feature Matrix for Example Circuit

Figure 4: Baseline Model Diagram

Figure 5: ARMAModel Diagram

ARMA Model
● Consists of ARMAConv (ac) layers
● X is node features matrix and Ã is the 

normalized Laplacian matrix
● W, V are trainable parameters
● Activation Function: ReLU
● Utilizes skip connections

Discussion
● The model does relatively well in the context of the problem
● Provides an almost instantaneous method of getting a rough estimate of 

power and area
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