
Behavioral
Verilog

C = A + B
D = X * Y

Structural
RTL

OR(...)
AND(...)
XOR(...)

 Tree

AND
 Inputs: …
 Outputs: …
OR
 Inputs: ...
 Outputs: ...

 Matrix

[1 2 3 4 5

 ]

Edge List

A — AND — B
C — OR — D

 CNN

1 Conv Layer
1 Max Pool Layer
1 FC Layer
L2 Loss

Behavioral
Verilog

C = A + B
D = X * Y

Structural
RTL

OR(...)
AND(...)
XOR(...)

 Tree

AND
 Inputs: …
 Outputs: …
OR
 Inputs: ...
 Outputs: ...

Graph

AND1 - AND2
AND2 - OR7
...

Node 0:
AND

Node 2:
OR

Adjacency Matrix Node Feature Matrix

Node 1:
OR

Node 0

Node 1

Node 2

Node 0
Node 1

Node 2 Node 0

Node 1

Node 2

A1

A2

A3

 X1

X2

X3

 Matrix

[1 2 3 4 5

 ]

 CNN

1 Conv Layer
1 Max Pool Layer
1 FC Layer
L2 Loss

 Graph CNN

gc
128

gc
64

gc
32

pool denseA, X

ac
128

ac
64

ac
32

pool denseA, X

PREDICTING POWER AND AREA FOR CHIP DESIGN

Introduction

References

Future Work

Model

Motivation
● Chip designers write code in a hardware description language (ex.

Verilog), which is consumed by computer-aided design tools to realize
the actual transistors on a chip, as well as their layout

● These CAD tools have a long runtime, owing to their computationally
expensive algorithms

● As a result, it can take several hours for a designer to get feedback on
the power consumption and area of their design, making it difficult to
effectively iterate on designs

● With a deep learning approach, it is possible to predict the area and
power of a design in a fraction of the time that CAD tools take

Approach
● Representing code as an input to a neural network is nontrivial and will

greatly influence the accuracy of the neural network
● Some work exists that demonstrate approaches to representing code

as a vector, but these are only effective for programming languages, not
hardware description languages

● Instead, our approach converts Verilog code into a graph of logic gates,
which can be represented as an adjacency matrix and node feature
matrix to the neural network

● Synopsys DesignWare library, consisting of basic building blocks of digital
circuits

● Generated the adjacency matrix and node feature matrix for 4569 designs and
their corresponding power consumption and area values

Model Inputs
● Circuits have a variable number of gates,

so each graph has a variable number of
nodes

● Utilize a disjoint union of each graph per
batch

Figure 3: Disjoint Union of each graph

● Add constraints (clock speed, etc.) as inputs to the neural network
● Add process technology as inputs
● Train larger, varied networks, with data from real designs

(1): Traditional GCN Layer

Model Training data (4113) Test Data (456)

GraphConv Power: 68%
Area: 65%

Power: 58%
Area: 61%

ARMA Power: 75%
Area: 69%

Power: 63%
Area: 61%

(3): ARMA Layer(2): Skip Layer

Metric
● Percentage of power and area estimates within 20%

Node
0:
AND

Node
2:
OR

Node
1:
OR

Adjacency Matrix

Node 0

Node 1

Node 0
Node 1

Node 2

Node 2

Node 0

Node 1

Node 2

Node Feature Matrix

Dataset Results and Discussion

Kalhan Koul
kkoul@stanford.edu

Kartik Prabhu
kprabhu7@stanford.edu

Runtime
● Synthesis runtime is design size dependent, but inference is constant
● Runtime on 64-bit carry look ahead adder

Figure 1: Example Circuit

Baseline Model
● Consists of GraphConv (gc) layers
● X is node features matrix and Ã is the

normalized Laplacian matrix
● W, b are trainable parameters
● Activation Function: ReLU

Figure 2: Adjacency and Node Feature Matrix for Example Circuit

Figure 4: Baseline Model Diagram

Figure 5: ARMAModel Diagram

ARMA Model
● Consists of ARMAConv (ac) layers
● X is node features matrix and Ã is the

normalized Laplacian matrix
● W, V are trainable parameters
● Activation Function: ReLU
● Utilizes skip connections

Discussion
● The model does relatively well in the context of the problem
● Provides an almost instantaneous method of getting a rough estimate of

power and area

[1] Filippo Maria Bianchi, Daniele Grattarola, Cesare Alippi, and Lorenzo Livi. Graph neural networks with
convolutional arma filters, 2019.
[2] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings of the
22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pages 855–864.ACM,
2016.
[4] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.5
[5] Hao Peng, Lili Mou, Ge Li, Yuxuan Liu, Lu Zhang, and Zhi Jin. Building program vector representations for
deep learning. Lecture Notes in Computer Science, page 547–553, 2015.
[6] Clifford Wolf and Johann Glaser. Yosys-a free verilog synthesis suite.

