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Motivation : : i . - o Metric
_= Synopsys DesignWare library, consisting of basic building blocks of digital —=—-—= ) -
e Chip designers write code in a hardware description language (ex. ¢ ci)r,cui?sy 9 Y 9 & 9 e Percentage of power and area estimates within 20%
\I/ﬁ'enlog), ‘INh'Ch s consumeg. by com;ﬁuter-:@eld design tools to realize ¢ Generated the adjacency matrix and node feature matrix for 4569 designs and
the actual transistors on a chip, as well as their layout their corresponding power consumption and area values Model Training data (4113) Test Data (456)

e These CAD tools have a long runtime, owing to their computationally
expensive algorithms Model

e As a result, it can take several hours for a designer to get feedback on GraphConv Power: 68% Power: 58%
the power consumption and area of their design, making it difficult to Model Inputs

Area: 65 Area: 619
effectively iterate on designs e Circuits have a variable number of gates, » rea: 65% rea: 61%
e With a deep learning approach, it is possible to predict the area and so each graph has a variable number of ™

power of a design in a fraction of the time that CAD tools take nodes ARMA Power: 75% Power: 63%
Approach e Utilize a disjoint union of each graph per Area: 69% Area: 61%
o Representing code as an input to a neural network is nontrivial and will batch
greatly influence the accuracy of the neural network Figure 3: Disjoint Union of each graph
e Some work exists that demonstrate approaches to representing code
as a vector, but these are only effective for programming languages, not

Runtime
e Synthesis runtime is design size dependent, but inference is constant
o Runtime on 64-bit carry look ahead adder

hardware description languages Baseline Model |
o Instead, our approach converts Verilog code into a graph of logic gates, e Consists of GraphConv (gc) layers Runtimes for Power and Area Analysis
which can be represented as an adjacency matrix and node feature e X is node features matrix and A is the ,x .. o g of g
matrix to the neural network normalized Laplacian matrix 128 64 32 Synthesis
e W, b are trainable parameters L
e Activation Function: ReLU Figure 4: Baseline Model Diagram Pre processing

1 0 -1 100 0 0 1

0 1 -1/=[0 10/ -]0 01 _ A

1 -1 9 00 2 110 Z = O'(AXW + b) Discussion Runtime (s)

o The model does relatively well in the context of the problem

e Provides an almost instantaneous method of getting a rough estimate of
power and area

Laplacian Matriz = Degree Matriz — Adjacency Matriz (1): Traditional GCN Layer

A, /1/0 A ARMA Model
O, O, -
%0 % 7 %9 . )(zolnS'StZ offAR’tMAConvt(_ac) Iaéegs. the A | o Add constraints (clock speed, etc.) as inputs to the neural network
e X is node features matrix an is the AX - ac meeiae ] o o Add process technology as inputs
Node 0 AND normalized Laplacian matrix * * * o Train larger, varied networks, with data from real designs
Node 0 0 O 1 e W, V are trainable parameters Ea .
o Activation Function: ReLU References
Node 1 0 O 1 Node 1 O R o Utilizes skip connections [1] Filippo Maria Bianchi, Daniele Grattarola, Cesare Alippi, and Lorenzo Livi. Graph neural networks with
g convolutional arma filters, 2019
. . 2] Adi G d Ji Leska . node2 Scalable fe [ ing f ks. In P di f the
Node 2 1 1 0 Node 2 O R Figure 5: ARMAModel Diagram DanAGH SICKDD niorationasconieronce on an?/v\aed:ee;[:c[:veerayr?:g d(;r«;‘em(:v?r:; p;‘gersoggg—g‘sgfigcm
2016.
C(t+1) W) @) () . K () 4] Thomas N Kipf and. Max Welling. i-supe i with graph networks.
Adjacency Matrix Node Feature Matrix Xy =a(AX™W +XV) Z = 1/ K Zkzl X, k [asr]>< I:i:;egg:;,a Bw(imsu?geuezl?i%uigﬁ 5Liu, Lu Zhang, and Zhi Jin. Building program vector representations for

deep learning. Lecture Notes in Computer Science, page 547-553, 2015.
[6] Clifford Wolf and Johann Glaser. Yosys-a free verilog synthesis suite

(2): Skip Layer (3): ARMA Layer
Figure 2: Adjacency and Node Feature Matrix for Example Circuit



