Behavioral Verilog	Structural RTL	Tree	Edge List	Matrix	CNN
C = A + B D = X * Y	OR() AND() XOR()	AND Inputs: Outputs: OR Inputs: Outputs:	A — AND — B C — OR — D	[1 2 3 4 5]	1 Conv Layer 1 Max Pool Layer 1 FC Layer L2 Loss

Behavioral Verilog	Structural RTL	Tree	Graph	
C = A + B D = X * Y	OR() AND() XOR()	AND Inputs: Outputs: OR Inputs: Outputs:	AND1 - AND2 AND2 - OR7 	

Node ne tode 2 Node 0 Node 1 Node 2 U

Adjacency Matrix

Node 0 $\begin{pmatrix} AND \\ OR \\ OR \end{pmatrix}$

Node Feature Matrix

PREDICTING POWER AND AREA FOR CHIP DESIGN

Kalhan Koul kkoul@stanford.edu

Kartik Prabhu kprabhu7@stanford.edu

Introduction

Motivation

- Chip designers write code in a hardware description language (ex. Verilog), which is consumed by computer-aided design tools to realize the actual transistors on a chip, as well as their layout
- These CAD tools have a long runtime, owing to their computationally expensive algorithms
- As a result, it can take several hours for a designer to get feedback on the power consumption and area of their design, making it difficult to effectively iterate on designs
- With a deep learning approach, it is possible to predict the area and power of a design in a fraction of the time that CAD tools take

Approach

- Representing code as an input to a neural network is nontrivial and will greatly influence the accuracy of the neural network
- Some work exists that demonstrate approaches to representing code as a vector, but these are only effective for programming languages, not hardware description languages
- Instead, our approach converts Verilog code into a graph of logic gates, which can be represented as an adjacency matrix and node feature matrix to the neural network

Figure 2: Adjacency and Node Feature Matrix for Example Circuit

- Dataset
- Synopsys DesignWare library, consisting of basic building blocks of digital circuits
- Generated the adjacency matrix and node feature matrix for 4569 designs and their corresponding power consumption and area values

Model

Model Inputs

- Circuits have a variable number of gates. so each graph has a variable number of nodes
- Utilize a disjoint union of each graph per batch

Baseline Model

- Consists of GraphConv (gc) layers
- X is node features matrix and A is the normalized Laplacian matrix
- W, b are trainable parameters
- Activation Function: ReLU

[1	0	-1		[1	0	0		[0]	0	1]
0	1	-1	=	0	1	0	<u>- 22</u> 0	0	0	1
$\lfloor -1 \rfloor$	$^{-1}$	2		0	0	2		1	1	0

Laplacian Matrix = Degree Matrix - Adjacency Matrix

- X is node features matrix and A is the AX

Figure 5: ARMAModel Diagram

$$Z = 1/K \sum_{k=1}^{K} \bar{X}_k^{(T)}$$
 (3): ARMA Laver

Results and Discussion

Metric

Percentage of power and area estimates within 20%

Model	Training data (4113)	Test Data (456)		
GraphConv	Power: 68% Area: 65%	Power: 58% Area: 61%		
ARMA	Power: 75% Area: 69%	Power: 63% Area: 61%		

Runtime

· Synthesis runtime is design size dependent, but inference is constant Runtime on 64-bit carry look ahead adder

Runtimes for Power and Area Analysis

Discussion

- The model does relatively well in the context of the problem
- · Provides an almost instantaneous method of getting a rough estimate of power and area

Future Work

- Add constraints (clock speed, etc.) as inputs to the neural network
- Add process technology as inputs
- Train larger, varied networks, with data from real designs

References

[1] Filippo Maria Bianchi, Daniele Grattarola, Cesare Alippi, and Lorenzo Livi. Graph neural networks with convolutional arma filters, 2019.

[2] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pages 855-864.ACM. 2016

[4] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907, 2016.5

[5] Hao Peng, Lili Mou, Ge Li, Yuxuan Liu, Lu Zhang, and Zhi Jin. Building program vector representations for deep learning. Lecture Notes in Computer Science, page 547-553, 2015. [6] Clifford Wolf and Johann Glaser. Yosys-a free verilog synthesis suite.

- ARMA Model
- Consists of ARMAConv (ac) lavers
- normalized Laplacian matrix
- W, V are trainable parameters
- Activation Function: ReLU
- Utilizes skip connections

 $\bar{X}_{k}^{(t+1)} = \sigma(\tilde{A}\bar{X}^{(t)}W^{(t)} + XV^{(t)})$ (2): Skip Laver

gc 32 128 64 Figure 4: Baseline Model Diagram

$$Z = \sigma(\tilde{A}XW + b)$$

(1): Traditional GCN Layer

64

