
              Improved YOLOv3 on Edge Device for Object detection & Classification
                Siyu Liu,  Elias Stein, John Sun  {siyuliu3, elistein, js44}@stanford.edu                              

           

Results Project Summary

We explored post training optimization techniques for improving the 
development performance of object detection architectures such as 
YOLOv3 on resource constrained devices such as the Jetson Nano. 
Through the TensorRT framework we applied optimization techniques 
such as Loop Fusion, Kernel Tuning, and Quantization and measured 
the impact on performance metrics like accuracy and inference 
execution time. 

These techniques all function around trying to reduce the memory 
and computational overhead of the model. For example, quantization 
does so by reducing the precision of the variables used in inference 
allowing for both faster computations (given the correct HW) and 
reduced memory.   

We used the TensorRT framework from NVIDIA to apply these 
optimization techniques to YOLOv3 models of different sizes, trained 
on different datasets and deployed on different types of hardware.

Future Work
● Repeat optimizations with a different framework to validate the accuracy 

drop measured by TensorRT.
● Utilize more aggressive INT8 quantization to examine more further 

examine trade-off of precision vs. performance.

Discussion 
From the central figures, we see that our baseline measurements of YOLOv3 are as 
expected, roughly reproducing the mAP results reported by the original YOLOv3 paper. On 
both the RTX and Nano we pay significant speed costs, approximately 2x and 3x 
respectively, for marginal increases in mAP. The Nano fares worse given it's limited 
compute power and resulting sensitivity to increases in FLOPS.

First we measured YOLOv3 performance with for non-quantization optimizations like layer 
fusion (LF) and kernel tuning (KT). The speed increased significantly (2-3x for RTX and 
1.2x for Nano) but the mAP score dropped significantly. This was quite surprising, since the 
applied optimizations should only work to increase arithmetic intensity and reduce loads 
and stores to memory. Interestingly, a review of NVIDIA discussion boards indicated that 
this may be due to a bug in TensorRT's implementation. 

Next, we measure performance including 16-bit floating point quantization. We observed a 
negligibly small decrease in mAP with another significant boost to inference speed (~2.5x 
for RTX and Nano). This result is reasonable as we would expect that the error introduced 
by precision loss to be minimal in a large NN like YOLOv3 since less importance will be 
given to any one weight value. Furthermore, reducing precision loss will have a greater 
impact on small weight values (due to the nature of floating point), but these values 
inherently contribute less to the output calculation.

Overall, we found that applying optimization techniques such as quantization could provide 
for a 2x - 6x increase in inference execution speed. Such performance gains could be 
critical for real world deployment on an edge device. Of course, in our testing this came with 
a significant drop in accuracy, which may ultimately outweigh such speed gains

References

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:  Unified, real-time object 
detection,” inProceedings of the IEEE conference on computer vision and pattern recognition, 2016, 
pp.779–788
“Deep Learning SDK Documentation,” NVIDIA Tensorrt Developer Guide, 06-Dec-2019. [Online].


