Sketch-to-image translation is a promising and
powerful tool which has the potential to change
people’s modes of expression. With the power of
deep learning network, artwork and creation won’t be
limited within a small group of artists; on the

Everyone could be artist: sketch to style-specified artwork
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Two cycleGANSs are trained together serially with the
same number of epochs.

The first cycleGAN generates real cat images from
edge.

The second cycleGAN translates the real cat images

into images with specified style.

contrary, everyone has the possibility to fully explore
his art potential and be a talented artist. A simple
sketch could be

It didn’t work well:

magically converted into a
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Considering the different levels of difficulty of two
sub-tasks, we proposed loss function to be the
adjustable weighted sum of the loss of two sub-tasks.
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Based on human evaluation results, the images
generated by our model are greatly acknowledged
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e to improve our evaluation strategies
o quantitative evaluations
o more participant in AMT perceptual studies.
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