

# **Evaluating the Factual Correctness for Abstractive Summarization**

# **The Problem**

- Text summarization: extractive, abstractive.
- Applications: news, laws, clinical, biomedical.
- However, **30%**<sup>[1]</sup> of summaries generated by abstractive models contain factual inconsistencies.

This is a **critical** issue for neural abstractive summarization.

How can we evaluate the factual correctness?

# **Abstractive Summarization**

Most recent works about abstractive summarization are based on <u>sequence-to-sequence</u> (seq2seq) architecture:

Seq2Seq: Basic seq2seq architecture. **Pointer-Generator**<sup>[2]</sup>: Allow to copy from source text. **ML**<sup>[3]</sup>: Attend over source and target text separately. <u>ML+RL<sup>[3]</sup></u>: Training with reinforcement learning.

Summaries are generated and sampled from <u>CNN/DM</u> dataset using these models.<sup>[4]</sup>

# **Factual Score**

*Fact Extractor:* we use <u>AllenNLP open information</u> extraction (OpenIE) toolkit to extract facts from text. Each fact is a triple (argument, predicate, argument).

**Fact Encoder**: We concatenate the fact triple and use <u>Google universal sentence encoder</u> to generate fact embedding.

**Factual Scorer**: We use <u>cosine-similarity</u> to estimate the relevance of each fact pair, and then compute precision, recall and F1 by averaging across facts from generated summary and facts from reference summary.

| • | • | • | • | • | • |
|---|---|---|---|---|---|
| • | • | • | • | • | • |
| • | • | • | • | • | • |
| • | • | • | • | • | • |
| • | • | • | • | • | • |
| • | • | • | • | • | • |
| • | • | • | • | • | • |

European finance ministers urge Swedes to vote yes to euro.

|  | • | • | • | • | • |
|--|---|---|---|---|---|
|  | • | • | • | • | • |
|  | • | • | • | • | • |
|  | • | • | • | • | • |
|  |   | - |   |   |   |
|  |   |   |   |   |   |
|  |   |   |   |   |   |
|  |   |   |   |   |   |
|  |   |   |   |   |   |
|  |   |   |   |   |   |

Swedes were asked to support ministers.

a professor at Stanford, and he teaches CS 230 for many years Truth: Andrew is Falsity: Andrew is not a professor at Berkeley, and she teaches CS 231 for many years years.



Yuhui Zhang\*

yuhuiz@stanford.edu



# **Falsity Attack**

We manually generate false examples with 5 simple text transformations:



### **Results**

#### **Evaluations of abstractive summarization with...**

- **ROUGE-L Score** (n-gram hard-match evaluation)
- **BERT Score**<sup>[5]</sup> (token soft-match evaluation)
- *Factual Score* (factual correctness evaluation)

| System              | ROUGE | BERT  | FACT  |
|---------------------|-------|-------|-------|
| Seq2seq             | 19.94 | 55.01 | 39.61 |
| Pointer-Generator   | 27.62 | 60.20 | 43.49 |
| $\operatorname{ML}$ | 26.57 | 60.35 | 42.83 |
| ML+RL               | 28.63 | 61.72 | 45.13 |

Factual score is consistent with human evaluation:  $ML+RL > Pointer-Generator > \approx ML > Seq2seq$ 

#### **Relation of factual score with ...**

#### ROUGE-L Score

• **BERT Score** (more strongly correlated)





### **Discussion and Future Work**

- Encoder is much more sensitive to noun phrases than number, pronoun and negation  $\rightarrow$  Design better **fact encoder** architecture.
- OpenIE outputs contain duplicated facts and noisy facts  $\rightarrow$  Try different ways to <u>denoise</u> OpenIE outputs.
- **Reinforcement learning** on factual score.

\* Research project with Yuhao Zhang and Christopher D Manning. [1] Kryscinski, Wojciech, et al. *Neural Text Summarization: A Critical* Evaluation. In EMNLP-IJCNLP (2019).

[2] See, Abigail, Peter J. Liu, and Christopher D. Manning. *Get To The Point:* Summarization with Pointer-Generator Networks. In ACL (2017).

[3] Paulus, Romain, Caiming Xiong, and Richard Socher. A deep reinforced model for abstractive summarization. In ICLR (2018).

[4] Chaganty, Arun, Stephen Mussmann, and Percy Liang. The price of debiasing automatic metrics in natural language evaluation. in ACL (2018). [5] Zhang, Tianyi, et al. BERTScore: Evaluating Text Generation with BERT. arXiv:1904.09675.