

Deep-Learning Based Classification Models for Wafer Defective Pattern Recognition

Jeong Cheol Seo jeongseo@Stanford.edu Recorded presentation: https://youtu.be/otHMwuNgaTl

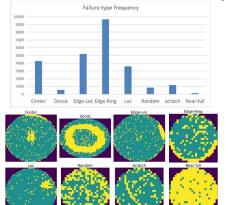
ABSTRACT AND OBJECTIVE

Deep-learning based multi-class classification models are trained for wafer map pattern of 9 defectives using four different architectures and a published wafer map dataset in Kaggle[1].

- Improving the ability to recognize the defect patterns of the wafer maps is required [2]
- VGG-16, ResNet-50 and two Simplified VGG-16 are trained on NVIDIA RTX 2080(8G) with Keras.
- Dataset is unbalanced so two data augmentation ways are used: Convolutional Autoencoder and Rotating.
- o Rotating is generating better data to make better prediction
- 'Scratch' class F1 score is the lowest and Class Activation Map shows the reason.

DATA AND FEATURES

- This wafer map dataset consist of 172950 images with manual label(9 labels)
- o The last label('none': no defect) occupies 85.2%.
- Each failure type data(14.8%) is distributed like the following chart and the each failure pattern looks like the next images.



o Training and Test data split is done by 80%: 20%

	Center	Donut	Edge-Loc	Edge-Ring	Loc	Near-full	Random	Scratch	none	Total
Traing	1889	6	593	43	462	35	110	86	11839	15063
Test	475	1	154	13	111	13	27	16	2956	3766

- o Data Augmentation
 - : For making a balanced training data (10K for each class)
 - 1) Convolutional Autoencoder: reconstructed images[3]
 - 2) Rotating: degrees randomly chosen
- o Due to noisy ground truth labeled data, minimum 10K is required[4]
- o Test is done using the originally distributed 20% dataset.

METHODS AND MODELS

- o Deep Learning Models used for wafer map classification
 - VGG-16
 - ResNet-50
 - Simplified VGG-16(SV): initial 2 Conv. and FC module

· GAP-SV: Global Average Pooling layer used

- Hyperparameter tuning for customized models(SV / GAP-SV)
 - Initializer : Xavier(uniform/normal) or He(uniform/normal)
 - → Xavier(uniform) show the best in experiments(Adam/SV)

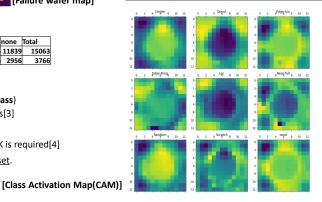
Initializer	Xavier_normal	Xavier_uniform	he_normal	he_uniform
F1 macro avg.	0.82	0.89	0.83	0.84

- · Optimizer: Adam is better than RMSprop
- Learning rate(Lr), Regularizer-L2(λ) and Dropout (experiments done):

(Adam/SV)

→ Dropout(0.4), L2(0.001), Lr(0.001) picked as shown in the table

Dronout	L2(λ)	F1 score(macro avg.)				
Dropout	LZ(A)	Lr=0.001	Lr=0.002			
	0.001	0.86	0.86			
0.2	0.01	0.84	0.77			
0.2	0.02	0.83	0.74			
	0.03	0.81	0.79			
	0.001	0.86	0.84			
0.3	0.01	0.83	0.84			
0.5	0.02	0.67	0.82			
	0.03	0.82	0.84			
	0.001	0.89	0.86			
0.4	0.01	0.81	0.85			
0.4	0.02	0.84	0.88			
	0.03	0.64	0.79			



RESULTS

- o Precision, Recall and F1 Score are reviewed for all test case
- o F1 Score is used for final metrics (Accuracy is same for all)

[F1 Score(Macro avg) by data augment method and model]

Class	Data Augment: Conv. Autoencoder					Data Augment: Rotating			
Class	SV	GAP-SV	VGG16	ResNet50	SV	GAP-SV	VGG16	ResNet50	
Center	0.98	0.97	0.99	0.96	0.99	0.98	0.98	0.99	
Donut	1	0.67	1	0.67	1	1	1	1	
Edge-Loc	0.82	0.84	0.85	0.78	0.85	0.87	0.86	0.85	
Edge-Ring	0.83	0.74	0.92	0.91	0.85	0.92	1	0.83	
Local	0.72	0.76	0.74	0.61	0.78	0.8	0.78	0.78	
Near-full	0.79	0.87	0.86	0.87	0.92	0.96	1	1	
Random	0.78	0.91	0.86	0.85	0.93	0.92	0.83	0.93	
Scratch	0.46	0.76	0.51	0.29	0.68	0.78	0.71	0.64	
none	0.99	0.99	0.99	0.98	0.99	0.99	0.99	0.99	
Macro avg	0.82	0.83	0.86	0.77	0.89	0.91	0.91	0.89	
Train Acc.	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	
Test Acc.	0.97	0.97	0.97	0.97	0.97	0.98	0.97	0.97	

		_		
	precision	recall	f1-score	# Data
Center	0.99	0.98	0.98	442
Donut	1	1	1	1
Edge-Loc	0.86	0.85	0.86	158
Edge-Ring	1	1	1	6
Loc	0.77	0.78	0.78	109
Near-full	1	1	1	11
Random	1	0.71	0.83	35
Scratch	0.89	0.59	0.71	27
none	0.98	0.99	0.99	2977
macro avg	0.94	0.88	0.91	
weighted avg	0.97	0.97	0.97	

[Precision, recall and f1-score for the VGG16 with rotating]

- o Scratch and Loc is hard to predict
- o Scratch's F1 score is lower than other class's for all cases
- o The CAM image shows clues for this
 - * Scratch looks similar with 'Near-full' and 'none'
 - * Loc looks similar with 'Edge-Ring'
- o CAM images looks similar with each classes map pattern.

CONCLUSIONS

- ☐ Training accuracy: 0.99, Test Accuracy: 0.98 is the best (GAP-SV)
- □ VGG-16 is the best for both augmented dataset (f1 score:0.91)
- ☐ GAP-SV is best with rotating data (training time is half of VGG-16)
- ☐ **Rotating** is better augment method for wafer map data
- ☐ <u>Future works</u>: Improve 'Scratch' and 'Loc' map's prediction and How to apply this to the production?

[Reference]

- [1] https://www.kaggle.com/qingyi/wm811k-wafer-map
- [2] Kiryong Kyeong and Heeyoung Kim, IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 31, NO. 3, AUGUST 2018
- [3] https://towardsdatascience.com/aligning-hand-written-digits-with-convolutional-autoencoders-99128b83af8b
- [4] Rajpurkar & Irvin et al., PLOS Medicine, 2018
- [5] https://github.com/JeongSeo74/DeepLearning-CS230 (Source Code)