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@ FoodGAN: SuperResolution on Low-Quality Food Images

Introduction Methods Evaluation
. Conditions:
Motivation: 1. SRGAN: Discriminator Network 312852 (325652 361252 e Each model was run for at least 15 epochs for testing

e QOver 300 million photos under food-related
hashtags on Instagram. A large portion of these
Images are low-quality images.

e Potential application of efficiently transmitting
low-resolution images and then upscaling using
our model.

* Most of them converged
* High res images were downsampled (4x) and blurred (o = 0.8)

Reimplemented in Keras
with TF 2.0
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Goal:

. . Preprocessed with a non-
e To train a generative model to enhance low

trainable Keras model to
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e Output: A.de—blurreql hlgh_er resolution (1080 x 2. VQGAN: VGG Loss is the MSE 3. SSIMGAN:
1080) version of the input image.
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performance of SRGAN-like models for a specific task.

Source:
e Scraped 8000 images from Instagram tagged
with #food, #foodporn, #yum, #yummy.

order to minimize the color fading.
* Use pre-trained models other than VGG for feature representations.
* Try out different architectures for the generator.

Dataset Result Next Steps:
eSUltsS * Include color difference as a minimizing objective in the loss function in
-

Processing:
1. Blurring: Used a 3x3 Gaussian filter with 0 = 0.5
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