
A method to improve classifier performance using Generative Adversarial
Networks(GANs) based data augmentation on the Kannada MNIST dataset

prateik@stanford.edu

In this project, a data augmentation method using
Generative Adversarial Networks(GANs) to improve
the performance of a Convolution Neural
Network(CNN) for the task of classification of
Kannada MNIST digits is presented. This technique
replaced 100 images from the original dataset with
synthetic generated data. The test accuracy is
shown to improve from 52.28 % to 70.07 % and
the CNN F1 score(macro avg.) has improved from
0.51 to 0.70.

Kannada is a regional language spoken in South India by
over 44 million people. The Kannada MNIST dataset has
been recently (Aug 2019).

Deep Learning techniques are typically data intensive
systems that demand a large amount of training data to
be used to obtain acceptable real world performance.
For certain classes of tasks like handwritten digits
recognition, as long as the digits are identifiable by a
human it does not matter how the data is generated.
Therefore, exploring the idea of using data
augmentation and GANs for developing synthetic
training data is interesting.

The input to the algorithm is a gray scale image which is
28 by 28 pixels in dimensions. A Convolutional Neural
Network (CNN) is used to output a predicted digit out of
10 classes.

Keras based ImageDataGenerator was used for Data
Augmentation with the following specifications:

Loss function L =

Motivation

Data and Preprocessing

Models

Results and Discussions Conclusion

References
• Kannada-MNIST: A new handwritten digits dataset for the Kannada

language, Prabhu, Vinay Uday, arXiv preprint arXiv:1908.01242, 2019
• Web Reference: https://www.kaggle.com/bustam/cnn-in-keras-for-

kannada-digits
• Web Reference:https://machinelearningmastery.com/how-to-develop-a-

generative-adversarial-network-for-an-mnist-handwritten-digits-from-
scratch-in-keras/

Hyperparameter Tuning

• Data : Rescale the MNIST images to be
between -1 and 1.

• Generator : Simple fully connected neural
network, Leaky ReLU
activation and BatchNormalization.

• Discriminator : Simple fully connected
neural network and Leaky ReLU activation.
The last activation is sigmoid.

• Loss : binary_crossentropy
• Optimizer : Adam(lr=0.0002, beta_1=0.5)
• Batch_size : 64
• Epochs : 100

CNN

Generator NN Discriminator NN
• Learning Rates used : 0.02 and 0.002
• Learning Rate Decay : Learning rate * 0.99 ^ epoch
• Batch Normalization: momentum = 0.1

• Batch Size Tuning

• Hyperparameters used for the Analysis:

Dataset Size Spec

CNN without Synthetic GAN Data CNN with Synthetic GAN Data

CNN Confusion Matrix CNN (GAN synthetic data)Confusion Matrix

X Axis Loss/Accuracy Value
Y axis number of epochs

