



# Intro & Background

#### Distinguishing between professional and amateur

artwork is vital when evaluating its commercial value. In 2010, psychologists Hawley-Dolan and Winner found that even untrained adults can distinguish between professionals' and children's abstract works} [1]. Can a machine learn to do the same?

I demonstrate that by applying deep learning techniques to address issues of high variance, even standard CNN architectures can successfully distinguish between most professional and amateur artwork.

## Methodology

#### Datasets

**DeviantArt** (amateur online art community) 440 **MART** (pro Italian/European/American art collection) 500





Figure 1: deviantArt images



Shallow Model



Output

Figure 2: MART images

|                             |                 | 0                     |
|-----------------------------|-----------------|-----------------------|
|                             | Table 1: Mode   | l Architectures       |
| <b>Baseline Model</b>       |                 | Shallow Mode          |
| Layer                       | Output          | Layer                 |
| Input                       | 3, 512, 512     | Input                 |
| Conv1 (f=3, p=1, s=1) $*$ 8 | 8, 512, 512     | Conv1 (f= $3$ , p=    |
| $\operatorname{ReLU}$       | 8,512,512       | ReLU                  |
| MaxPool2D(2,2)              | 8, 256, 256     | MaxPool2D(2,2)        |
| Conv2 (f=3, p=1, s=1) $*$ 1 | 6  16, 256, 256 | Conv2 (f= $3$ , p=    |
| ReLU                        | 16, 256, 256    | $\operatorname{ReLU}$ |
| MaxPool2D(2,2)              | 16, 128, 128    | MaxPool2D(2,2         |
| Conv3 (f=3, p=1, s=1) $*$ 3 | 2  32, 128, 128 | Conv3 (f= $3$ , p=    |
| ReLU                        | 32, 128, 128    | $\operatorname{ReLU}$ |
| MaxPool2D(2,2)              | 32, 64, 64      | MaxPool2D(2,2)        |
| Conv4 (f=3, p=1, s=1) $*$ 3 | 2  64,  64,  64 | Conv4 (f= $3$ , p=    |
| ReLU                        | 64, 64, 64      | ReLU                  |
| MaxPool2D(2,2)              | 64, 32, 32      | MaxPool2D(2,2)        |
| FC1                         | 256             | FC1                   |
| ReLU                        | 256             | ReLU                  |
| FC2                         | 84              | FC2                   |
| ReLU                        | 84              | ReLU                  |
| Dropout                     | 84              | Dropout               |
| Softmax                     | 2               | Softmax               |

Stanford

University



# Experiments, Results & Analysis



| Dropout Prob | Learning Rate | Epochs | Train Acc (%) | Dev Acc $(\%)$ |
|--------------|---------------|--------|---------------|----------------|
| 0.1          | 1e-4          | 50     | 97.16         | 73.40          |
| 0.2          | 1e-4          | 50     | 92.91         | 73.94          |
| 0.3          | 1e-4          | 50     | 99.29         | 69.68          |
| 0.4          | 1e-4          | 50     | 97.34         | 73.94          |
| 0.5          | 1e-4          | 50     | 98.94         | 69.68          |
| 0.6          | 1e-4          | 50     | 93.97         | 74.47          |
| 0.7          | 1e-4          | 50     | 99.11         | 75.00          |
| 0.8          | 1e-4          | 50     | 99.11         | 70.74          |

Model VanillaCNN (Ba

ShallowCNN VanillaCNN-D ShallowCNN-DA





#### Links to Code & Results

For code, please see my Github repo sharmant/abstract-art-classification. All experimental results run on Google Colab are displayed in the Python3 notebook at https://colab.research.google.com/drive/1B4rgRkUycxYdySqgZUfcNjnq6afr0FeA.

# Distinguishing Professional and Abstract Art Using CNNs

Sharman Tan

CS230: Deep Learning *Fall 2019* 

Figure 3: VanillaCNN (Baseline)

#### Figure 4: VanillaCNN-DA

| Table 6: Final Tuned Model Train and Test Accuracies |               |         |        |               |                 |  |  |  |
|------------------------------------------------------|---------------|---------|--------|---------------|-----------------|--|--|--|
|                                                      | Learning Rate | Dropout | Epochs | Train Acc (%) | Test Acc $(\%)$ |  |  |  |
| aseline)                                             | 1e-4          | 0.7     | 50     | 99.11         | 77.13           |  |  |  |
|                                                      | 1e-4          | 0.2     | 50     | 84.57         | 78.19           |  |  |  |
| DA                                                   | 1e-4          | 0.1     | 100    | 99.56         | 93.09           |  |  |  |
| А                                                    | 1e-4          | 0.4     | 100    | 99.65         | 92.55           |  |  |  |

Figure 5: All Incorrectly Classified Images for VanillaCNN-DA and ShallowCNN-DA

### **1** VanillaCNN 50 epochs train 99.11 || dev 75.00 || test 77.13

Tuned Dropout Prob *Tuned Learning Rate* 1e-5, 3e-5, **1e-4**, 3e-4, 1e-3 **Problem** High variance

### **2** ShallowCNN 50 epochs train 84.57 || dev 76.60 || test 78.19

Fewer Convolutional Filters Simplify CNN architecture (Table 1) Tuned Dropout Prob 0.1, **0.2**, 0.3, 0.4, 0.5 **Problem** High variance Still large gap b/t train and dev loss, < 80% acc

### **3** VanillaCNN-DA 100 epochs train 99.56 || dev 93.09 || test 93.09

**4 ShallowCNN-DA** 100 epochs train 84.57 || dev 92.02 || test 92.55

#### Data Augmentation

Vertically flip all images (double count) Randomly split 60/20/20 train/dev/test Use *new* train and *old* dev/test sets train **1128** || dev **188** || test **188** *Tuned Dropout Prob* Vanilla **0.1**, 0.2, 0.3, 0.4, 0.5 Shallow 0.1, 0.2, 0.3, **0.4**, 0.5

### Takeaways

Main problem High variance Solutions data augmentation Amateur (predicted Pro) geometric

### Stanford Computer Science

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, **0.7**, 0.8 Large gap b/t train and dev loss (Fig. 3)

#### Tune dropout probability

- Simplify model architecture
- **[KEY]** Increase training data using

#### **Analyzing Misclassified Examples**

- highly complex & colorful
- simple and monochrome
- Professional (predicted Amateur)

# Conclusion & Next Steps

### **Standard CNN architectures work!**

By tackling the issue of high variance, even standard CNN architectures are successful at distinguishing professional and amateur abstract artwork.

#### **More Advanced CNNs**

Can more advanced CNNs correctly label easy-to-misclassify images? (e.g. when simple monochrome pieces are professional vs. amateur)

#### **More Data**

- Data augmentation by vertical flips drastically boosted accuracy!
- Can performing more data augmentation (e.g. crops, horizontal flips) further improve accuracy?
- Increasing data overall (train/dev/test)

#### What are humans missing?

- What exactly are the CNNs learning that humans find difficult to learn?
- Which features contribute most to their predictions? Color? Types of edges?

#### **Content vs. Style**

- Can focusing on content vs. style of images change how images are classified?
- Can attention mechanisms be applied to focus on the most distinguishing aspects?

#### Acknowledgements

I would like to thank Huizi Mao for mentoring me throughout this project and the CS230 teaching staff for the knowledge I've gained through this class.

#### References

- 1. Andreza Sartori. http://disi.unitn.it/~sartori/. Accessed: 2019-10-10. 2. Deviantart. https://www.deviantart.com. Accessed: 2019-10-10.
- 3. Mart. http://www.mart.trento.it. Accessed: 2019-10-10.
- 4. Angelina Hawley-Dolan and Ellen Winner. Seeing the mind behind the art: People can distinguish abstract expressionist paintings from highly similar paintings by children, chimps, monkeys, and elephants. Association for Psychological Science, 2011.
- 5. Wei-Lin Hsiao and Kristen Grauman. Learning the latent "look": Sergey Karayev, Matthew Trentacoste, Helen Han, Aseem Agarwala, Trevor Darrell, Aaron Hertzmann, and Holger Winnemoeller. Recognizing image style. arXiv preprint arXiv:1311.3715, 2013.