
Dancing Seq2Seq: An Adversarial Approach to Transformer 
Generative Dialog

Alan Salimov

Abstract
Generative dialogue systems use RNNs, attention 
mechanisms, and adversarial training to create 
coherent dialogue on both closed and open topic 
corpora. While previous state of the art approaches 
used recurrent encoder-decoder(HRED) 
approaches, the transformer approach has shown to 
provider faster and better results across NLP 
applications. By using stacked layers of attention 
instead of RNNs, transformers have shown that a 
language model can be learned using solely 
attention. However, all of these approaches suffer 
from a lack of diverse responses. HRED trained 
adversarially has shown to outperform vanilla HRED; 
in this paper, we propose an adversarialy trained 
generative dialog system, mirroring the utterance 
level discriminator proposed in We generate dialog 
using a multi-gpu adapted version of the transformer 
seq2seq system.We train this using the Ubuntu Help 
Forum Dialog Corpus, a closed-topic corpus. 

Corpus
Ubuntu Dialogue Corpus ((UDC) dataset. 
This dataset was extracted from the 
Ubuntu Relay Chat Channel. , The 
dataset is very large compared to the 
Internet Argument Corpus, and is closed 
topic; all dialogs are related specifically to 
Ubuntu Forum topics. The UDC contains 
about 1.85 million conversations with an 
average of 5 utterances per 
conversation, with a maximum per-
utterance sequence length of 40. The 
maximum number of utterances is 25.

Generator
Slightly modified version of the transformer  

seq2seq model developed by Adjenji, Lee, 
and Liu, trained and updated step-wise. 

Discriminator
Slightly modified version of the discriminator 

presented in the hred-gan implementation by 
Olabiyi, Khazane, and Salimov

Model Training
• Used DataParallelModel and

DataParallelCriterion loss 
developed by Zhang, et al 

• Increase batch size 4->1800, 
training set size 11800->1.6 million, 

• Generator only training used 
CrossEntropyLoss

• Adversarial used
BinaryCrossEntropyLoss

Results and Conclusion
• While we were able to realistically 

fit a much larger dataset and allow 
both vanilla and adversarial 
versions to be trained with state of 
the PyTorch Multi-GPU training 
implementations, we were unable 
to derive useful results. 

• Training time for both vanilla and 
adversarial models went from over
24 hours to roughly 3 hours per 
epoch.


