
Model

font-gen: Deep Models for Inferring Alternate 
Language Sets from Fonts

Fonts display a large amount of stylistic variance; 
as a result, the task of creating new ones is a 
labor-intensive process usually reserved for 
skilled artists and designers. In this paper, we 
examine methods of generating characters for a 
language set from fonts which lack 
them—methods which, with refinement, could 
serve as useful tools for designers looking to 
“internationalize” existing and in-progress fonts 
quickly and easily.

We present neural networks for three tasks: 
discrimination between in-font and not-in-font 
using a set of four basis characters (AHQJ), 
generation of all 26 Latin uppercase characters 
given basis characters, and generation of 46 
Japanese hiragana given basis characters.

Background

Data

Results & Discussion

Conclusions
Limitations: similar fonts can have distinguishing 
marks, some fonts are not represented in 
Japanese (e.g., the monospaced-serif font Courier 
New or the more hand-drawn Comic Sans).

Interesting avenues for future work:
- Generating more characters, modified/larger 

networks, more fonts from more sources
- VAEs or GANs, SVG decoders for translating 

encoding into scale-invariant vector

Footnotes

Garrick Fernandez (garrick@cs.stanford.edu)
CS230 Deep Learning, Aut 2019

We adapted a script [1] to produce 64x64 
resolution, 8-bit grayscale images of individual 
characters while preserving relative vertical 
alignments. The fonts were taken from the 
Google Fonts repo, which offers 2908 free and 
open-source fonts in various styles and weights. 
Of these, there are only eight font families that 
support Japanese.

For the first task, we tried two “tower” 
architectures [2] one with densely connected 
layers in the towers, as well as one with 
convolutional layers. We also developed one 
“shared" architecture with convolution, to see if 
individual filters extracting similar features from 
all input characters could be useful to the 
network.

For the second, we took a multitask approach, 
where the most descriptive encoding from the 
first task is fed through shared layers generating 
all characters. We experimented with numbers of 
neurons, layers, and convolutional layers.

In the third, we attempted transfer learning by 
using the weights and network developed in the 
second task, and training it on the smaller set of 
Japanese fonts. 

[1] E. Bernhardsson, Analyzing 50k fonts using 
deep neural networks.

[2] S. Baluja, Learning typographic style: from 
discrimination to synthesis, arXiv preprint 
arXiv:1603.04000

Link to code: github.com/garrickf/font-gen

Special thanks to the CS230 course staff for inspiration 
and support!

In the discrimination task, the tower architecture 
achieved 89.76% accuracy on a test set of 332 
examples, with erroneous classifications leaning 
towards false negatives.

In multitask learning, adding convolutional layers gets 
rid of grainy effects in generated letters. Adding more 
neurons results in an improvement in MSE loss, but 
adding more layers has less of a beneficial effect.

Transfer learning works well in the third task, with an 
improvement in training loss and validation set loss.

Predicting fonts’ Japanese sets worked well when the 
fonts were similar to ones we trained on. Common 
features can be seen between basis and output.

Figure 1: Samples from generated datasets for each task.

Figure 4: Training progress. Figure 7: Loss plots for all tasks.

Figures 5-6: Convolution; predicting Japanese sets.

Figure 3: Architecture for third (transfer learning) task.

Figure 2: Architecture search in second task.


