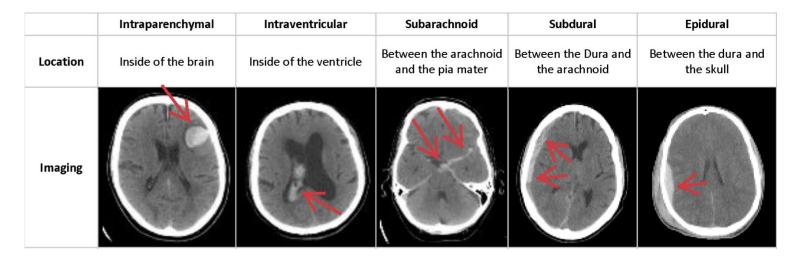

INTRACRANIAL HEMORRHAGE TYPE CLASSIFIER

Emily Anaya, Michael Beckinghausen {eanaya, mbecking} @ stanford.edu CS 230 Deep Learning

Abstract

Urgent diagnosis of intracranial hemorrhage type is necessary for improved chances of patient survival. We evaluate several 2D CNN models to perform both 5-class and 6-class multilabel classification of intracranial hemorrhages.

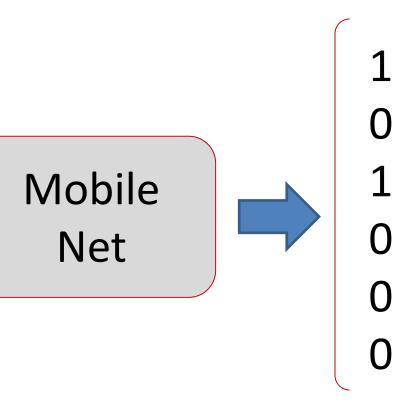


Dataset

Our dataset consists of 2D brain computed tomography (CT) images from Kaggle's RSNA Intracranial Hemorrhage that may or may not contain hemorrhages(s)

Intracranial Hemorrhage Types

The images were converted for easy input to our ML algorithm: Dicom \rightarrow 224x224x3 images


Table 1. Model Performance Comparison Using a 50-50 Split Hemorrhage Containing Dataset

	Baseline			Our Model			MobileNet		
	F1	Precision	Recall	F1	Precision	Recall	F1	Precision	Recall
Epidural	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Intraparenchymal	0.04	0.33	0.03	0.24	0.16	0.44	0.23	0.17	0.36
Intraventricular	0.05	0.11	0.03	0.20	0.14	0.38	0.08	0.06	0.15
Subarachnoid	0.02	0.24	0.22	0.27	0.18	0.57	0.25	0.18	0.44
Subdural	0.27	0.24	0.32	0.21	0.14	0.45	0.27	0.21	0.41
Any	0.46	0.46	0.46	0.61	0.53	0.73	0.65	0.50	0.93

Table 2. Model Performance Comparison Using a Solely Hemorrhage Containing Dataset

	Baseline			Our Model			MobileNet		
	F1	Precision	Recall	F1	Precision	Recall	F1	Precision	Recall
Epidural	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Intraparenchymal	0.30	0.28	0.33	0.26	0.21	0.35	0.41	0.29	0.70
Intraventricular	0.30	0.33	0.35	0.40	0.31	0.57	0.11	0.12	0.10
Subarachnoid	0.38	0.29	0.52	0.45	0.33	0.71	0.44	0.30	0.83
Subdural	0.42	0.60	0.32	0.60	0.47	0.80	0.64	0.49	0.91
Any	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Model and Results

- any
- epidural
- intraparenchymal
- intraventricular
- subdural
- subarachnoid

- information
- Incorporate additional preprocessing of images (thresholding, normalization) to help the model better identify hemorrhages
- Train on larger dataset to help with overfitting

Our 2D method is **simpler** than 3D methods, requiring less time and cost, making this technique suitable for clinical applications.

Highlights: MobileNet performance of **0.91** and **0.83** recall for subdural and subarachnoid hemorrhages, respectively

Acknowledgments: CS 230 Teaching Staff

Stanford ENGINEERING

Future Work

2D - 3D CNN implementation to take advantage of depth

Conclusions