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Wafer inspection is very important for increasing the yield of a
micro/nano-fabrication process in the semiconductor industry because
it is possible to figure out the root causes of various process issues
based on different kinds of detected wafer map failure patterns [1-4].
The traditional visual recognition approach performed by an
experienced person can be expensive and time-consuming [1-4]. In
this work, novel deep learning methods are proposed to automate
accurate identification of various defect patterns on wafers. The input
to our models is a normalized 1-channel wafer map image (42×42×1)
with only one failure pattern from the 8 defect types, and we then
used both simplified AlexNet and simplified VGG16 models to output
the predicted defect pattern of this wafer map.

q Data information
Ø data source: public WM-

81K(LSWMD) from Kaggle [5]
Ø Total useful sample size: 25519
Ø 8 classes of failure patterns

q Data normalization
Ø 42×42×1

q Data augmentation
Ø flipping and rotating

q Data split
Ø training : testing = 7: 3
Ø Approach 1: data augmentation 

after data split
Ø Approach 2: data augmentation 

before data split

Figure 1. Wafer map comparisons before and after image (a) upsizing or (b) downsizing.

Figure 2. (a) Wafer map comparisons as well as failure pattern type distributions using 
(b) Approach 1 and (c) Approach 2 before and after data augmentation.

Figure 3. Simplified AlexNet [6] model architecture. Figure 4. Simplified VGG16 [7] model architecture. 

q To solve the non-convergence problem of the simplified VGG16 
model using Approach 2

q To use transfer learning to classify wafer map defect types
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Table 1. Bias and variance metrics of all the models. 

Figure 5. Testing confusion matrices of (a) the simplified AlexNet and (b) VGG16 models with 
regularization. (c) Performance metrics for our simplified VGG16 model with no regularization. 

Figure 6. Testing accuracy 
results for hyperparameter 
tuning (keep rate = 0.5). 

q L2 and dropout regularizations

q Hyperparameter tuning
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