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Introduction

Wafer inspection is very important for increasing the yield of a
micro/nano-fabrication process in the semiconductor industry because 3x3 — Sx3 2x42%1 POOLING POOLING POOLING
it is possible to figure out the root causes of various process ISSUES  sxszx1 .0 40x40x8 ©  20x20x8 goo 18x18x16 srives J§ sricers J§ °°° Jiorites oty " ° [ safiters [ 2fives -

CONV MAX POOLING CONV
o A o CONV CONV VIAX CONV CONV VIAX CONV CONV MIAX
N - ' 3x3 3x3 3x3 3 x 3 3x3 3x3

based on different kinds of detected wafer map failure patterns [1-4]. o O
agn . agn MAX POOLING CONV FLATTEN O FC O Softmax O
The traditional visual recognition approach performed by an 22, g 3X3 (I A N oW coni g, |l v J cow f cow
: . . : °" ers 2 o 2 POOLING 2 2 2 POOLING = ~
experlenced perSOn can be expenSI\le and t|me'COnsum|ng [1-4] In "= 9X9IXx16 ;Zé 7x7x32 1568 1568 8 64 filters 64 filters 64 filters 2% 2 128 filters | 128 filters [l 128 filters 2% 2

this work, novel deep learning methods are proposed to automate
accurate identification of various defect patterns on wafers. The input
to our models is a normalized 1-channel wafer map image (42x42x1) _ _
with only one failure pattern from the 8 defect types, and we then Results and Discussion
used both simplified AlexNet and simplified VGG16 models to output

Figure 3. Simplified AlexNet [6] model architecture. Figure 4. Simplified VGG16 [7] model architecture.
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regularization. (c) Performance metrics for our simplified VGG16 model with no regularization.
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Figure 1. Wafer map comparisons before and after image (a) upsizing or (b) downsizing. _
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Approach 1: data augmentation _ _
after data split 1 To use transfer learning to classify wafer map defect types

Approach 2: data augmentation
before data split

failure type frequency after data augmentation failure type frequency after data augmentation

g & 8 8 3
o

A\

References

ooooo
(c) [1] Wu, Ming-Ju, Jyh-Shing R. Jang, and Jui-Long Chen. "Wafer map failure pattern recognition and similarity ranking for large-scale data sets." IEEE Transactions on Semiconductor Manufacturing 28.1 (2014): 1-12.
[2] Fan, Mengying, Qin Wang, and Ben van der Waal. "Wafer defect patterns recognition based on OPTICS and multi-label classification." 2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). |IEEE, 2016.
[3] Piao, Minghao, et al. "Decision Tree Ensemble-Based Wafer Map Failure Pattern Recognition Based on Radon Transform-Based Features." IEEE Transactions on Semiconductor Manufacturing 31.2 (2018): 250-257.
ondu

0
00
[ m 8000
.
B L " \» 5000
" ko k2
. S 6000 £ 400
' E E
g g
L o o
o S 4000 & 3000
| ] o o
- * *
] 2000
2000
1000
0 0
Center Donut Edge-Loc  Edge-Ring Loc Random Scratch Near-full
[4] Yu, Jianbo, and Xiaolei Lu. "Wafer map defect detection and recognition using joint local and nonlocal linear discriminant analysis." IEEE Transactions on Semic ctor Manufacturing 29.1 (2015): 33-43.

Fig u re 2 ) (a) Wafer map Com pariSOnS aS We” aS failu re patte rn type d iStri bUtionS USing Eg} Et:pig/v;v;w.k?gqlﬁ.(;og/(gsirllgvié\:vn;%1(I3(—ev;?f?zr-néa:|>_rnton "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems. 2012
(b) Approach 1 and (c) Approach 2 before and after data augmentation.

[7] Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014).


https://youtu.be/AW3U1vzpIoM
https://www.kaggle.com/qingyi/wm811k-wafer-map

