
Transformer Model for Mathematical Reasoning
Justin Dieter jdieter@stanford.edu, Will White will2@stanford.edu

Stanford University

Introduction

I Solving math problems is an excellent benchmark of a machine
learning model’s ability to implement logical reasoning. In 2019,
DeepMind introduced a dataset of problem-solution pairs in a wide
range of mathematical tasks, including arithmetic, comparison,
algebra, calculus, polynomials, probability and many more.

IOne chief goal of natural language processing is to encode the
embedded logic of natural language. Hence, a potentially interesting
research direction is to test the limits of the complexity of the logic
that can be learned from symbolic statements of language. To this
end, we were interested in deploying a modern sequence model,
specifically a Transformer model, on some math problems, which
contain more complicated embedded logic.

IPrior work has shown modern machine learning approaches to be
accurate for some tasks in the dataset while performing poorly on
tasks involving ”several intermediate calculations”, that still might be
considered easy for (applicably trained) humans.

Example Problem Desired Output

Solve -n = 11*z - 14*z + 17, 22
= 3*z - 2*n for z.

4

Suppose 3*b - 51 = -9. Let
t(n) be the first derivative of 5
- b*n**3 + 13*n + 29*n - 9*n -
1. Differentiate t(v) wrt v.

-84*v

Is 1128546091 a prime number? False

Note that the problem statements contain
English words as well as mathematical symbols,
and while most problems are formatted to have
numerical solutions, solution data may be
mathematical expressions or words (e.g. True,
False).

Data Pipeline Considerations

ITokenizing Words and Mathematical Expressions
I As seen in the examples provided above, the problem statements contain both

words and mathematical expressions. DeepMind elects to tokenize the dataset
character-by-character in order to encode arbitrary mathematical expressions.
However, this means that each word in the dataset is split into each letter, taking
up more space in its one-hot encoding. Our solution is to check if space-split
chunks of the text data are in the Python English dictionary and tokenize as a
whole word if so, and tokenize character-by-character if not. This saves memory in
generating the one-hot encoding for the training examples.

Model

A diagram of the Transformer Model courtesy of pytorch.org
IIII Hyperparameters of our implementation are as follows: embedding dimension of 200,

6 encoder layers, 6 decoder layers, 8 attention heads, feed-forward dimension of
2048, and dropout with probability 0.1.

I The loss function used is cross-entropy.

I The optimizer used is Adam with β1 = 0.9, β2 = 0.995 and ε = 1e − 9, and a
learning rate of α = 0.0001.

Conclusion

Ultimately, more compute is required to reach the accuracy levels of
0.76 interpolation and 0.50 extrapolation reported by DeepMind. Note
that the accuracy for interpolation and extrapolation are not too far
apart at approximately 0.03, so the degree of overfitting is acceptably
low. This may be in part attributed to the use of dropout. Also, clearly
we would’ve liked to do more experiments and hyperparameter tuning,
but due to long training time and short time in the quarter, we were
unfortunately left with this single experiment.
Ultimately, even the state of the art accuracy marks are significantly less
than human level accuracy (for properly trained humans), so there is
room for trying new algorithms on this dataset. Deepmind observes that
their algorithm performs poorly on problems involving ”several
intermediate calculations”, so future work might include memory
augmented architectures such as a Neural Turing Machine in the hope
that the information of these intermediate steps might be learned and
stored.

Evaluation

IDue to memory constraints, we trained on 40 percent of the available
2 million training examples for a total of 800,000 training examples.
Training was carried out in mini-batches of 400.

IOur test accuracy was assessed by assigning a 1 if the predicted
output matched the answer exactly and assigning a 0 otherwise, then
taking the proportion of correctly answered problems over total
number of training examples.

IOur evaluation was carried out on both interpolated and extrapolated
test sets. The interpolated test set comes from the same distribution
as the training set, while the extrapolated test set is altered to include,
for example, larger numbers or more function compositions. The idea
is that if the algorithm performs well on the extrapolated test set, it is
generalizing well, and so extrapolation performance can be used as an
assessment of overfitting.

ITraining was carried out on an NVIDIA Titan RTX.

Figure: Interpolation accuracy - vertical axis is accuracy and horizontal axis is number of
training epochs.

Figure: Extrapolation accuracy - vertical axis is accuracy and horizontal axis is number
of training epochs.

IThe plots show interpolation accuracy as high as 0.41 and
extrapolation accuracy as high as 0.38.

Stanford University

