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• Intracranial hemorrhage (ICH), bleeding that occurs
inside the cranium, is a serious health problem

• Computed tomography (CT) is the most commonly
used medical imaging technique

• Visual inspection by radiologists & manual quantitative
estimation of the type & size of hematoma

• Procedure is time-consuming & requires the availability
of trained radiologists at every moment

• Automated hemorrhage detection tools capable of
providing robust inference can be life saving

1. Motivation

• Dataset of CT scan (DICOM) images provided by
Radiological Society of North America for the Kaggle
competition - RSNA Intracranial Hemorrhage Detection

• Labelled training dataset has 753K images with each
image having following attributes:
• Raw pixel array (512, 512) of Hounsfield Units (HU)
• Meta-data related to Windows (centre, width, rescale

intercept / slope), CT Volumes (Study / Sequence
IDs, Position, Orientation), etc.

• Y vector of dimension 6 corresponding to the following
labels: 1. Epidural (ED), 2. Intraparenchymal (IP), 3.
Intraventricular (IV), 4. Subarachnoid (SA), 5. Subdural
(SD), and 6. Any (of the 5 sub-types)

• An image can have 0 – 5 ICH sub-type labels

2. Data

• Literature review: CV & medical image analysis
• Used a random sample of 100K images for rapid

prototyping – ensured similar class distribution
• Explored multiple approaches along:

• Pre-processing: Raw HU values, Linear & Sigmoid
Windowed images (Brain, Sub-dural & Bone)

• Network architecture: 2-D ConvNet, 3-D Convnet, 2-
D ConvNet + Bidirectional LSTM

• Transfer learning: ConvNets pre-trained on Imagenet
• Training strategy: Weighted/Unweighted Binary

cross-entropy, Focal loss
• Used weighted multi-label logarithmic loss as the

evaluation measure
• Implementation done using Keras. Training done on

single Tesla P100 GPU

3. Approach 5. Discussion

4. Results

6. Visualization
• Used Class Activation Maps [2] to highlight regions in

the image that are influencing the network’s decision

7. Future
• Multi-GPU training on PyTorch / MXNet
• Deeper transfer learning (fine tuning Conv layers /

entire architecture)
• Hierarchical decision system: 2 class (Detector) + 5

class (Labeler) with Focal loss for class epidural

• Efficacy of Transfer learning (based on DenseNet [1])
• Simplicity outshined - Raw HUs, 2-D ConvNet, Un-

weighted BCEL
• No incremental gains – Windowing, Hybrid 3-D

ConvNet, CNN + Bidirectional LSTM, Focal Loss
• Test AUC of 0.9329 for ICH detection. Recall of 84.2%

with Precision of 51.4%. Accuracy of 86.4%
• Scope for improvement in ICH sub-type detection.

Precision ranges from 18-32% for Recall of 80-85%
• Results are sub-optimal for epidural ICH which is a rare

class with event rate of 0.42%
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ED IP IV SA SD Any
# 3,145 36,118 26,205 35,675 47,166 107,933 
% 0.42% 4.80% 3.48% 4.74% 6.27% 14.34%

Any ICH ED IP
Train Test Train Test Train Test

AUC 0.9843 0.9329 0.9581 0.9004 0.9678 0.9237
P@85pR 61.87% 51.37% 0.42% 0.40% 23.33% 19.99%
ACC@85pR 90.93% 86.41% 0.42% 0.40% 84.66% 82.85%
R@85pR 95.66% 84.16% 100.00% 100.00% 95.88% 86.20%

IV SA SD
Train Test Train Test Train Test

AUC 0.9882 0.9567 0.9625 0.9053 0.9735 0.9238
P@85pR 37.32% 31.96% 21.34% 17.61% 26.67% 23.09%
ACC@85pR 94.28% 93.44% 82.92% 80.71% 83.22% 81.05%
R@85pR 95.27% 81.12% 96.35% 84.69% 96.62% 86.86%

Data Pre-proc. Network Opt. Loss Train Test
SampA Raw HU 7 *(Conv-BN-Relu-MaxPool) + 2*Dense Wtd BCE 1.744 1.722
SampA Raw HU 7 *(Conv-BN-Relu-MaxPool) + 2*Dense Un-Wtd BCE 1.147 1.131
SampA Raw HU Pre-tr IncResNetV2 w/o Top + 2*Dense Un-Wtd BCE 1.198 1.200
SampA Raw HU Pre-tr EfficientNetB7 w/o Top + 2 Dense Un-Wtd BCE 1.213 1.305
SampA Raw HU Pre-tr DenseNet w/o Top + 2 Dense Un-Wtd BCE 1.058 1.082
SampA Raw HU Pre-tr DenseNet w/o Top + 2 Dense Focal Loss 1.250 1.270
SampA Lin. BSB Pre-tr DenseNet w/o Top + 2 Dense Un-Wtd BCE 1.264 1.240
SampA Sig. BSB Pre-tr DenseNet w/o Top + 2 Dense Un-Wtd BCE 0.942 1.127
SampA 3D adj slcs Pre-tr DenseNet w/o Top + 2 Dense Un-Wtd BCE 0.995 1.088
SampB Raw HU Pre-tr DenseNet w/o Top + 4 Dense Un-Wtd BCE 1.175 1.476
SampB Raw HU Pre-tr DenseNet w/o Top + Bi-LSTM Un-Wtd BCE 1.084 1.534
SampB Raw HU Pre-tr DenseNet w/o Top + Bi-LSTM+Attn Un-Wtd BCE 1.308 1.571
FullD Raw HU Pre-tr DenseNet w/o Top + 4 Dense Un-Wtd BCE 0.743 0.874
FullD 3D adj slcs Pre-tr DenseNet w/o Top + 4 Dense Un-Wtd BCE 0.553 0.886
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