Highlights

- **Reproduction** of VoteNet [1], the state-of-the-art neural network for 3D object detection in point clouds.
- Error Analysis on our reproduced results and report quantitative and qualitative findings.
- **Improvement Strategies** for better performance:
- Hyperparameter Tuning: we tune the weights for the loss and learning rates
- Input Features: we include RGB features as input
- Backbone Module: we augment the backbone [2] with VoxelEncoder [3]

Introduction

- 3D object detection aims at detecting and classifying objects in 3D scenes.
- The task usually takes RGB-D data such as point clouds as input and performs object detection.

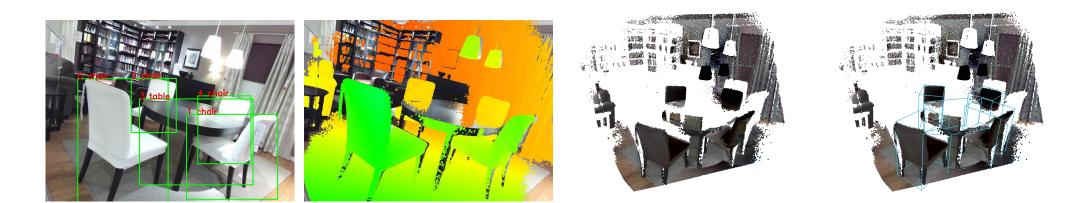


Figure 1: Example SUN RGB-D dataset [4] and 3D detection output.

Related Work

- Non Deep Learning Methods compare RGB-D data with 3D shapes in databases using, for example, sliding windows.
- **2D Object Detectors** such as R-CNN are extended into 3D versions and applied to 3D voxels.
- Projection-based methods such as MV3D project 3D information onto multiple 2D planes and apply 2D object detectors.

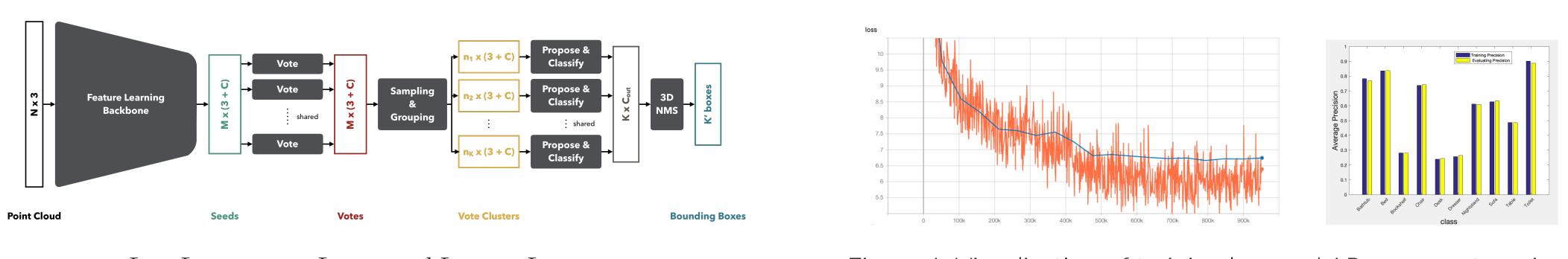
These approaches sacrifice the valuable geometric information and sparsity in 3D point clouds.

3D Object Detection in Point Clouds

Yen-Yu Chang Tzu-Sheng Kuo Shao-Yuan Ho

yenyu, tskuo, yuan1995@stanford.edu

VoteNet



 $L = L_{vote-req} + aL_{obj-cls} + bL_{box} + cL_{sem-cls},$

Figure 2: The architecture and the loss function of VoteNet.

Reproduction Results

Table 1: Evaluation metric is AP with 3D IoU threshold = 0.25.

model	bathtub	bed	bookshelf	chair	desk	dresser	nightstand	sofa	table	toilet	mAP
paper	74.4	83.0	28.8	75.3	22.0	29.8	62.2	64.0	47.3	90.1	57.7
ours 1	77.8	82.7	28.1	74.2	24.2	24.4	61.7	62.2	49.0	89.4	57.4
ours 2	77.1	83.1	28.4	74.7	25.1	25.2	61.7	61.6	49.4	87.7	57.4
ours 3	76.8	83.7	27.9	74.3	24.3	26.4	60.9	63.4	48.6	88.6	57.5

Example Visualization

Figure 3: Reproduced qualitative results.

model	bathtub	bed	bookshelf	chair	desk	dresser	nightstand	sofa	table	toilet	mAP
paper	74.4	83.0	28.8	75.3	22.0	29.8	62.2	64.0	47.3	90.1	57.7
$\alpha_{100,130,160}$	76.4	82.5	30.2	74.5	23.9	27.2	59.2	62.9	48.3	88.8	57.4
$lpha_{80,110,140}$	77.3	83.8	28.5	74.5	23.3	26.1	63.1	62.3	49.5	90.6	57.9
a = 0.8	79.5	83.3	28.5	74.3	23.7	26.9	60.0	63.3	49.4	89.0	57.8
b = 1.3	74.6	82.0	26.3	74.7	23.3	26.5	58.4	60.9	49.8	88.3	56.5
c = 0.5	71.6	83.3	26.1	74.4	22.4	26.7	61.1	58.9	46.5	89.3	56.0
RGB	72.4	84.3	27.0	73.4	24.6	24.2	58.3	62.7	49.7	87.7	56.4
VFE	4.75	23.2	2.95	36.9	2.00	0.68	79.1	14.2	11.6	47.8	14.6

[1]	-	C. R. hterr
[2]	N	C. R. <i>Jeurc</i> pp. 5
[3]	-	′. Zh Comp
[4]	-	5. So /isior

Stanford CS 230 Final Project

Error Analysis

Figure 4: Visualization of training loss and AP across categories.

Improvement Strategies

• Tune hyperparameters such as learning rate and weights of loss. • Include RGB feature as input and keep its along with XYZ. • Modify backbone by adding Voxel Feature Encoding layers [3].

Improvement Results

Table 2: Results for improvements.

Selected References

- . Qi, O. Litany, K. He, and L. J. Guibas, ``Deep hough voting for 3d object detection in point clouds," in Proceedings of the IEEE national Conference on Computer Vision, 2019.
- . Qi, L. Yi, H. Su, and L. J. Guibas, ``Pointnet++: Deep hierarchical feature learning on point sets in a metric space," in Advances in ral Information Processing Systems 30 (I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, eds.), 5099--5108, Curran Associates, Inc., 2017.
- hou and O. Tuzel, ``Voxelnet: End-to-end learning for point cloud based 3d object detection," in 2018 IEEE/CVF Conference on puter Vision and Pattern Recognition, pp. 4490--4499, June 2018.
- ong, S. P. Lichtenberg, and J. Xiao, ``Sun rgb-d: A rgb-d scene understanding benchmark suite," in 2015 IEEE Conference on Computer on and Pattern Recognition (CVPR), pp. 567--576, June 2015.
- [5] Y. Zhou and O. Tuzel, ``Voxelnet: End-to-end learning for point cloud based 3d object detection," in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4490--4499, June 2018.