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Overview 
Intracranial hemorrhages have fatal consequences depending upon its subtype, location, and size. A fast and accurate classification using a machine learning algorithm well fitted to aid 
the current clinical workflow could provide critical assistance. In this project, I use a single slice of a CT scan in DICOM image format as input. Multi-class classification is conducted to 
diagnose intracranial hemorrhages and its five subtypes: intraparenchymal, intraventricular, subarachnoid, subdural, epidural. Transfer learning is applied based on ResNet-50 and linear 
windowing is compared with sigmoid windowing in its performance.
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Conclusion & Future
The highest performing algorithm was chosen that had 
the lowest validation loss, which was the one using 
sigmoid windowing with 3 different windows. 
Since using different windowing techniques resulted in 
significantly different results, the next step would be to 
find the best window setting values for sigmoid 
windowing[1]. Then, test the most successful models 
with the different window settings. In addition, I would 
make the classification into a 2 step process to first detect 
intracranial hemorrhages and then to classify the 
subtypes.
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I used brain CT scan images of size (512, 512) as input to determine whether 
which was and used ResNet-50 to classify each image
scale image to Hounsfield Units(HU) and select three different contrasts to highlight the window of interest. Next, I use the pretrained weights from imagenet for 
ResNet-50 a 5 classes each representing subtype: intraparenchymal, intraventricular, subarachnoid, subdural, epidural.

 


