You Tube-8M Video Understanding

INTRODUCTION

MOTIVATION:

e \ideo understanding is a challenging task
for numerous applications and research.

e This project addresses the problem of
multi-label video classification and
temporal localizations for user-generated
videos.

INPUTS:
e Youlube-8M frame-level features
dataset and segment-rated dataset.
APPROACH:
e Video-level
o visual and audio features aggregation
with NetVLAD.
o Mixture-of-Experts for final
classification
e Segment-level
o Transfer learning based on video-level
model.
o Context-ignore and context-aware
combined model.

RESULTS:

Figure 1: Mixture-of-Experts: experts specifies in different
regimes, manager determines the relevance of experts.

Video-level model achieves 85% global
average precision. Segment-level model
achieves 82% mean average precision.

- DATA N

e YouTube-8M dataset released by Google.
Millions of YouTube videos, with
machine-generated annotations from a
diverse vocabulary of 3,800+ visual entities

e YouTube-8M Segments Dataset:which
iIncludes human verified labels at the

\5—second segment level /
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METHODS
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EQN 1: Vector of Locally
Aggregated Descriptors (VLAD)

EQN 1: NetVLAD, with VLAD

integrated with supervised learning
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EQN 1: MoE formula
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Figure 2: Video-level model. NetVLAD layer for features aggregation,
MoE for the final classification
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Figure 4: Temporal localization architecture: context-ignore model is
video-level model fine-tuned on segment dataset. Context-aware model
encodes entire video and each segment with video-level model, then
delivers the embeddings to fully connected classifier.

RESULTS

Video-level classification: Global average
precision of 85%. Temporal localization:
Mean average precision of 82%
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Figure 5: Training and evaluation process of video-level classification
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igure 6: Training and evaluation process of temporal localization.
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/ CONCLUSION
SUMMARY.

e (Classifier with NetVLAD aggregation and
Mixture-of-Experts achieves gAP of 85% in
large-scale video classification.

e Transfer learning with context-aware and

context-ignore combined model achieves mAP of

82% Iin temporal localization
FUTURE WORK:

e Incorporate temporal features in video classification

as the current algorithm is focused on static
features. E.g. combine NetVLAD, RNN and MoE.

e Reduce model size. Current video-level model is
3.72G, and segment-level model is 10G.




