
We wanted to try applying the classifier that we trained to an entirely distinct dataset, 
the human genome. Understanding how often predicted attachment sites exist in the 
human genome and where these sites are located can help us to develop a 
recombinase that works effectively on the human genome.

We scanned 1 mbp regions in the human genome selected at random (see below), 
with a sequence length of 106 base pairs (bp) and a stride of 10 bp. We analyzed 
31,795,188 sequences is total. Using a probability cutoff of 0.99999, we identified 
22,502 sequences that were predicted attP sites, and 77 sequences that were 
predicted attB sites. This large disparity between the frequency of the two sites is 
intriguing and requires further investigation to understand, but it may be due in part to 
our model’s lower sensitivity to attB site detection (see confusion matrix to the left).

TCCCTGTAATCATCCCAGGTCAGGACTACCTGGTTGTGTAAGTACATTGGCACCAGTAAATTAGCAGAAGCATAAGTGGCAGGACGCATAGCCCACACTCAAGAGGA

GGTAGGCGGCGGTGTCGTCGTCCTCGAAGGACTCGTGTGCCATGACGTGGCACCAGTGGCAGCTGGCGTACCCGACGCTGAGCAGCACGGGCACATCCCGCTTCCTG
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Task I - Classifying attachment sites
Integrative mobile genetic elements are 
ubiquitous in nature. Certain mobile 
elements use a recombinase to integrate 
the element (orange circle, right) into the 
genome (grey line, right) by binding to the 
attP (blue rectangle, right) and the attB 
(green rectangle, right) attachment sites to 
recombine the two strands. In this study, 
we wanted to use deep learning to 
understand how recombinases recognize 
and bind to their target attachment sites.

Large serine recombinases (LSRs) are ~500 amino acids in length, and 
contain three distinct domains (below) – A catalytic N-terminal resolvase 
domain (green), a DNA-binding recombinase domain (red), and a zinc-ribbon 
domain (blue) that likely regulates the directionality of the recombination 
reaction. These recombinases are useful tools for genome editing, and 
understanding the mechanism by which they recognize and recombine two 
strands of DNA will help us to further develop them as tools.

• The model that we have developed for the first classification task will be 
useful for Matt Durrant’s PhD Thesis. It will be used to screen predicted 
attachment sites going forward, which can then be experimentally validated. 

• The second task, predicting if protein binds to a given attachment site using 
primary sequence alone, is more difficult. Future models could draw upon 
biophysical homology models of the 3-dimensional structure of the protein in 
an attempt to improve binding prediction.
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Future Directions

The inputs of our algorithms are as follow.
● DNA sequences varying from 101-150 nucleotides in length (4 nucleotide 

characters {A, T, G, C} encoded as a one-hot vector).
● Amino acid sequences varying from 200-600 amino acids in length (20 

amino acid characters encoded as a one-hot-vector). 

We use  neural networks for two different classification tasks. The output for 
our first classification task (task I) is a label that predicts the type of 
attachment site for an input DNA sequence (ternary output). The output for 
the second classification task (task II) is a binary label indicating whether an 
input DNA sequence can bind an input amino acid sequence (binary output).

Total Parameters: 1.3 Million

The final layer has a softmax
activation with three classes.
The softmax function outputs a 
vector of probabilities p.

Each probability is computed 
using the following formula.

Finally, we use the following 
generalization of logistic loss.
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Architecture Dataset Training Acc. Dev Acc.

Majority Class Guessing Raw 66.7% 66.7%

Logistic Regression Raw 68.0% 68.3%

Dense Network Raw 98.0% 70.1%

3x3 filter CNN Raw 98.6% 81.2%

4x4 filter CNN Raw 94.6% 80.9%

Majority Class Guessing Cleaned 66.7% 66.7%

Logistic Regression Cleaned 70.4% 70.4%

Dense Network Cleaned 99.2% 83.4%

3x3 filter CNN Cleaned 94.0% 89.8%

4x4 CNN Cleaned 93.8% 88.6%

The final selected model had a test accuracy of 89.2%, but 
this single metric doesn’t fully explain its performance. The 
confusion matrix (below) reveals that the predictions are 
quite precise, but the sensitivity is lower for the attX sites, as 
attB sites are often confused with negatives (non-sites).

On the whole, we are pleased with the outcome of this project. Most deep 
learning models that predict whether or not a protein binds to a DNA sequence 
are trained on data generated from controlled experiments on human cells. Our 
dataset was generated by analyzing thousands of diverse bacterial genomes, 
and we were clearly able to identify meaningful signals in both tasks. This is an 
exciting finding and an encouraging start.

In consulting with an expert in deep learning for genomics, Anshul Kundaje, we 
were informed that our second task would be considerably more difficult than 
the first. We found that the second task was indeed more difficult than the first, 
but we were still able to demonstrate a significant improvement over random 
with our best model. Another interesting finding of this study was the 
importance of cleaning the initial dataset - we substantially increased 
performance despite cutting the size of the dataset in half.

Architecture Dataset Training Acc. Dev Acc.

Majority Class Guessing Raw 66.7% 66.7%

LSTM-CNN Raw 66.7% 66.7%

Minhash-CNN Raw 70.4% 68.0%

Majority Class Guessing Cleaned 66.7% 66.7%

LSTM-CNN Cleaned 71.8% 70.1%

Minhash-CNN Cleaned 90.1% 80.1%

Matt Durrant has recently developed a computational pipeline to mine public databases 
containing >100k bacterial genomes to identify recombinases and their predicted attachment 
sites (Durrant et al., 2019). This pipeline identified ~9,000 recombinases, along with predicted 
attachment sites. Negative examples were synthesized using various techniques, and we 
found that removing low-confidence predictions dramatically improved performance.

Below is an example of the data:

The first task that we addressed was predicting if a given DNA sequence was an attP site, an attB site, or a negative, 
random sequence. Our dataset was  2/3rd negative sequences, 1/6th attP, and 1/6th attB sites. We used a 70-10-20 
train-dev-test split. The raw dataset contained 177,426 examples, and the cleaned dataset contained 90,078 examples.

The second task was to predict which protein amino acid sequence binds to which DNA sequence. The input was an 
(attachment site, protein) pair and the output was whether or not the protein targeted the attachment site (1 or 0). The 
dataset was 2/3rd negatives (no binding), and 1/3rd positives (binding). We used a 70-10-20 train-dev-test split. The raw 
dataset contained 231,171 examples, and the cleaned dataset contained 107,442 examples.

Proportions by Row Proportions by Column

Total Parameters: 3.2 Million

The final layer produces a class 
probability via the sigmoid 
activation, and the standard 
logistic loss is used in training.

We considered two possible encoding schemes for the protein sequence: an 
LSTM based many-to-one character level encoding (V1) and a min-hash 
signature based on the k-mers in the protein (V2). The minhash embeddings 
were 100-dimensional (i.e. we used 100 random permutations over the set of 
all possible 4-mers to produce the embeddings), and preserve Jaccard 
similarity. The V2 model performed best, achieving 80.3% test accuracy.

MYTARSQEGASSTTEDETGPSDLDLRGRPAGLATPDELARLHPDAVFLIAYSRISLDWRKHSRKKAATSSWSAGKGVANQHRRNDKNAARHG
AIIVHRYTDNDLSASKRDVVRPDFQAMLRDLRRGHTPEGYPVHGAICVDQDRVQRTDRDWEDFVDALTLDPTRRFYTPSGPMDLTEESEIIK
TGVMAVVNKAESLKKKRRIRDWHQDRILDGLPHSGPRPFGWEEDRENLRPAEATYLAWAMDERIKGKAMKTLCLEAKRRGLTGTRGGEIVPQ
TLTQMMTAPRVCGYRANRGDLVLDDHGEPIVGIWKTICSPEKWIAVCATFGDGSTYLARGSGTPRITGIPKTIKYMGSTLLRCQYRFGEDTE
DTSLIGRVCNEPMGGSKASSKKSPYVYTCARCSRNAISGPMVDMQIQGLLLAKLDQAQATFIPPDLAWPKEDELRQRADKLAELEKEWEADT
ISSEMFYRLAPKIEKEVKVLRRERAQFELVSQAEREAPGDVARKWLAGEYDLAQKRKVLFEAFAAIQVRPGRKGNKTPDPKRLTPVWHQ
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An example of our model’s  predictions when scanning across the human genome.


