Deep Vein Thrombosis Detection From CT Scans

Anirudh Joshi, Ishan Shah, Rui Liu | {anirudhjoshi, ijshah, rui3}@stanford.edu

Project Sponsor: Dr. Lawrence Hofmann, Stanford School of Medicine

Motivation
- Deep vein thrombosis (DVT) is a blood clot commonly found in deep veins of the lower extremities
- Every year, 60,000-100,000 Americans die of complications arising from DVT
- Patients who get CT scans are frequently discharged before a radiologist looks at the scan
- Early and automated detection is critical for lowering fatalities and in regions with few radiologists

Data and Features
- We use the VITAL dataset curated by Dr. Lawrence Hofmann’s team at Stanford
- The images are grayscale of size 512x512

Models
- Baseline (non-deep-learning) Model
 - Get SIFT encoded image features and use K-Means and SVM classifier to classify images
- Classification Models
 - DenseNet-161
 - VGG-16
 - Final classification layers were replaced to reflect the correct number of classes.
- Multitask Model

Analysis
- CAMs indicate that in images the model misclassifies, it is unable to localize the veins
- We trained a fully convolutional sliding window model to locate veins in the images regardless of thrombosis. The model hits AUC of 0.9 indicating that it can identify the region of the vein.

Key Findings
- Highly localized information is needed for detection of thrombosis from CT scans.
- Deep Neural Networks are capable of locating regions in CT scans where veins are present.
- Anatomy matters and including scans from above the groin degrades network performance.

Results

![Table](https://example.com/table.png)

<table>
<thead>
<tr>
<th>Experiment</th>
<th>AUC</th>
<th>Precision</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIFT Baseline</td>
<td>0.55</td>
<td>0.56</td>
<td>0.72</td>
</tr>
<tr>
<td>VGG-16</td>
<td>0.50</td>
<td>0.54</td>
<td>0.40</td>
</tr>
<tr>
<td>DenseNet-161 (train)</td>
<td>0.78</td>
<td>0.72</td>
<td>0.94</td>
</tr>
<tr>
<td>DenseNet-161 (test)</td>
<td>0.51</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>DenseNet-161 (test) with dropout</td>
<td>0.66</td>
<td>0.63</td>
<td>0.88</td>
</tr>
<tr>
<td>Multitask ResNet%UNet</td>
<td>0.69</td>
<td>0.68</td>
<td>0.73</td>
</tr>
</tbody>
</table>

Conclusions and Future Work
- Deep learning is effective in DVT detection and can perform better with more local information.
- Future modeling: Cascaded model structures with vein localization followed by thrombosis classification.
- Future datasets: A more comprehensive dataset including normal cases is needed with consistency in quality of scans between patients.

References: