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e Baseline (non-deep-learning) Model

ROC for Sliding Window Vein Detection

Deep vein thrombosis (DVT) is a blood clot o Get SIFT encoded image features and use )
commonly found in deep veins of the lower K-Means and SVM classifier to classify images
extremities | | e Classification Models P
e Every year, 60,000-100,000 Americans die o DenseNet-161
of complications arising from DVT o VGG-16 : o
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IScharae ertore a radioloqaist I1ooks a e Fig. 3. Error Analysis of the Classification Models. (Left) CAMs for incorrectly
g g correct number Of classes. classified images.(Right) ROC Curve for Patchwise Sliding Window Vein Detection
Sud! L e Multitask Model e CAMs indicate that in images the model
e Early and automated detection is critical for e | Jicate tr J | |
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radiologists e \We trained a fuIIylcor!vqutlc.)naI sliding window
model to locate veins in the images regardless of
- I thrombosis. The model hits AUC of 0.9 indicating
Data and Features T & 1 that it can identify the region of the vein.
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Results e Anatomy matters and including scans
from above the groin degrades network
Experiment AUC | Precision | Recall
SIFT Baseline 0.55 0.56 0.72 performance.
. DVTin Femoral (Loft and I Riot VGG-16 0.50 0.54 0.40
ig. 1. Presence o in Femoral (Left) and lliac veins (Right DenseNet-161 (train) 0.78 0.72 0.94 .
S DenseNet-161 (test) 051 | 06 | 06 Conclusions and Future Work
o 33% of 460 CT scans in validation & test DenseNet-161 (test) with dropout | 0.66 0.63 0.88
sets, 2D slices split 84%-8%-8% Viultitask ResNettRe! 6691 068 1 07 Deep learning is effective in DVT detection and
e [wo distinct anatomies: Femoral (below Table 1: Classification performance across models can perf()rm better with more local information.
the groin) and lliac (above the groin) - r() b il . Dce Loss (i) e Future modeling: Cascaded model structures with
focused solely on femoral scans SRl 7 N ' 11 s NG vein localization followed by thrombosis
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DVT or No DVT" label given per scan | e e e e e e e Future datasets: A more comprehensive dataset
e Image split into 16x16 “patches” and I A B A A S B including normal cases is needed with
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the optimization process
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