
Inferring Shading Parameters from Graphically Generated
Images Ruta Joshi [ruta@stanford.edu]

Anthony Carrington [acarring@stanford.edu]
Madeleine Yip [mjyipstanford@stanford.edu]

Overview

Data

Models Results

References

Our dataset consists of 10,000 images that we generated using
MaterialX. All images were of a single mesh and shaded using 10
floating point properties: saturation (base), color (3 RGB values),
specular, specular roughness, specular color (3 RGB values), and
metalness. We first generated the ground truth values for these
properties, then used MaterialX to render a mesh shaded with these
properties. The input images were cropped and resized to size (224 x
224 x 3) and were labeled with their 10 ground truth property values,
all scaled to fall between 0 and 1. RGB values were normalized by
dividing by 255. We split the dataset as 65% train, 15% validation, and
20% test for evaluating our model.

[1] V. Deschaintre, M. Aittala, F. Durand, G. Drettakis, and A. Bousseau, “Single-image svbrdf capture with a rendering-aware deep network,”
ACM Transactions on Graphics (SIGGRAPH Conference Proceedings), vol. 37, p. 15, aug 2018.

[2] D. Gao, X. Li, Y. Dong, P. Peers, K. Xu, and X. Tong, “Deep inverse rendering for high-resolution svbrdf estimation from an arbitrary number of
images,” ACM Transactions on Graphics (TOG), vol. 38, no. 4, p. 134, 2019.

[3] V. Belagiannis, C. Rupprecht, G. Carneiro, and N. Navab, “Robust optimization for deep regression,” in Proceedings of the IEEE international
conference on computer vision, pp. 2830–2838, 2015.

[4] S. Lathuilière, P. Mesejo, X. Alameda-Pineda, and R. Horaud, “A comprehensive analysis of
deep regression,” IEEE transactions on pattern analysis and machine intelligence, 2019.

[5] T. H. Nguyen-Phuoc, C. Li, S. Balaban, and Y. Yang, “Rendernet: A deep convolutional network for differentiable rendering from 3d shapes,” in
Advances in Neural Information Processing Systems, pp. 7891–7901, 2018.

Our team used deep learning to reverse engineer a 3D image generated
with MaterialX, a look development platform for computer graphics used
for film. Given a computer-generated image of a mesh, shaded using 10
floating point properties, we regress the float values that define each
property. We use transfer learning on existing VGG16 and ResNet50
architectures to evaluate the performance of different architectures on this
domain. We were able to achieve the best results from our fine tuned
Resnet50 model, which achieved a MSE loss of 0.09 and MAE of 0.26.
The network architecture we propose can be used for film and
photography applications in which the properties of an image need to be
known in order to regenerate similar images using a different platform.

Discussion and Future Work

Features

Example images from our dataset

The data has (224 x 224 x 3) or 150,528 input features, which consist
of the RGB color values that make up the MaterialX images in our
dataset. All features are raw input features, since the goal of our
project was to create a model that could output the shading properties
of an image from its raw depiction. Moreover, we use pre-trained deep
neural networks with proven success on computer vision tasks,
VGG-16 and ResNet-50, to handle and abstract feature extraction.

Comparison of ground truth labels and predictions from ResNet50 V3,
our best performing model.

We trained the following models:

1. VGG16 (V1) with a fully connected sigmoid output layer of 10

neurons
2. VGG16 (V2) with an added convolutional layer, spatial dropout, and

a fully connected output layer of 10 neurons
3. VGG16 with one-hot vectors of 1001 bins for each of the 10 floats

for classification (VGG16 with bins V1)
4. VGG16 with one-hot vectors and added convolutional layers

(VGG16 with bins V2)
5. ResNet50 (V2) with an added convolutional layer, spatial dropout,

and a fully connected output layer of 10 neurons
6. ResNet50 (V3) with an added average pooling layer, two dense

layers, spatial dropout, and batch normalization

We sought to compare models so that we could identify the best
architecture for the task.

Shown are the basic VGG16 and ResNet50 architectures from which
we removed the last pooling and dense layers and added our new
architecture for models 1, 2, 3, and 4:

We also created a new loss function, modifying cross entropy loss, for
our bins-based architecture. We used this for comparing the bins
architecture models 5 and 6.

VGG16
Base
Architecture

ResNet50
Base
Architecture

Images from Ground
Truth Labels

Images from Model
Predicted Labels

We found from our experiments that classification was an easier task for
VGG to learn than regression, and that ResNet models outperformed
VGG models by a small amount. All models performed similarly on the
test set and validation set, but ResNet models, which are inherently
simpler than VGG, trained faster and were easier to interpret.

Our best performing model was a pre-trained ResNet50 (ending before
the pool and dense layer) with additionally trainable layers, consisting of
an average pool, 2x [512 Dense, Dropout 50%] Block, and a BatchNorm
layer. In the future, we would recommend training earlier layers as well.

Given more computational resources and time, we would explore using
bins to apply the classify-then-regress trick to the ResNet50 models. We
would also tune the number of bins used for classification, conduct a
grid search for hyperparameters, and apply learning rate decay to all
models.

mailto:acarring@stanford.edu
mailto:haroldw@stanford.edu

