Robust 3D Object Tracking in Autonomous Vehicles
Eric Chan (erchan@stanford.edu), Anthony Galczak (agalczak@stanford.edu), Anthony Li (antli@stanford.edu)
Department of Computer Science, Stanford University

Abstract
We present a stereo-camera based 3D multiple-vehicle-tracking system that utilizes Kalman filtering to improve robustness. The objective of our system is to accurately predict locations and orientations of vehicles from stereo camera data. It consists of three modules: a 2D object detection network, 3D position extraction, and 3D object correlation / smoothing. The system approaches the 3D localization performance of LIDAR and significantly outperforms the state-of-the-art monocular vehicle tracking systems.

Data
2D object detector training data set
- KITTI Object Detection 2012[1]
 - 2D bounding boxes, observation angle.
 - 7481/7518 train/test split[2]
Tracking evaluation data set
- KITTI Object Tracking 2012[1]
 - Sequential stereo camera images
 - 21 labeled sequences, 200+ frames ea.

Features
The features for our model are the left image of the object tracking data set. From here, we calculate a 2D bounding box from our YOLO model and combine it with the corresponding right image to produce a depth prediction. Finally, we output a 3D position of the object which we reconstruct into a 3D bounding box.

Models
We use transfer learning on top of YOLOv2[5] to extract image-space bounding boxes and observation angles from our imagery. This is necessary as YOLOv2 performance for detecting vehicles on the KITTI data set has been shown to be very poor out of the box[6].

Results
Kalman filtering outperformed both our unfilt and particle filtering for 3D localization performance.

Discussion
Although our system lacks the fine-grained precision of LIDAR, it can still adequately track most vehicles.

Our system achieves comparable precision to LIDAR for vehicles that are “Easy” to detect, but performs significantly worse for more difficult vehicles.

Our system significantly outperforms state-of-the-art monocular detectors, achieving a 450% MAP improvement for “Easy” detections and 270% improvement for “Moderate” difficulty vehicles.

Our 2D object detection performance is significantly better than our 3D performance, implying our results could be better with improved ranging accuracy.

Future
We have identified two areas that would result in significant performance improvements.

To provide vehicle tracking, our system correlates each 3D detection with the most likely tracked vehicle. Our current algorithm uses a distance-based heuristic, which is sometimes confused by closely clustered vehicles. A possible extension is an appearance-based matching algorithm based on image embeddings.

Our ranging system performs poorly on vehicles that are significantly occluded because it ranges the occluding object rather than the occluded vehicle. We hypothesize that a ranging algorithm that includes semantic segmentation could produce significant performance improvements for occluded vehicles.

References