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MOTIVATION

* Pneumonia is one of the most dangerous and prevalent
diseases worldwide.

* This results in increased workload in hospitals.

* Research has shown automation of pneumonia detection
is possible [1] [2].

* In this research, we make use of small dataset and o . | B 0 100 200 0 100 200

evaluate data augmentation and regularization methods to Figure 1: On the left: A chest X-ray from patient with pneumonia. Figure 3: Estimation based on an irrelevant landmark in the
provide reliable results. On the right: A normal X-ray image. picture

* We expect recall to be equal to 1, since doctors always
edge on the worst-side outcome, when unsure of the
patient’s condition.

* Using the integrated gradients method (Fig. 3), we conclude that
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the model is not always basing its prediction on relevant data.
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* Our dataset includes 5,863 images of frontal-view chest X- Normal - 108 12 250 CONLUSION
ray images. B 200
* Since the dataset is small, keep as many images on the % o * The dataset was too small to build a reliable tool.
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training set as possible. Split using ratios 85%/7.5%/7.5%. 2 * The general decisions were correct and would have a
- Use data augmentation techniques: o eumonis . -100 better result in a larger dataset.
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* Image rotation by up to 15 degrees. 50 : ..
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* Horizontal flip. ‘\0@‘ 0@0“ the images, but the relevant areas of each image.
* Explore regularization methods: & * We could always use visualization techniques for medical
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, , _ issues we do not know the causes of, since neural
Figure 2: Confusion matrix for the test set.

networks provide useful insights through their ability to
visualize results.

* L2-regularization and dropout.

* Neural style transfer.

* Generally good metrics: 98.36% accuracy on the training set,
ARCHITECTURE 96.36% on the validation and 96.61% on the test test.
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