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Motivation

Given a particular sensor resolution and
face recognition block, there 1s a trade-off
between the camera’s field of view and the
working distance. In this project, we
explore a deep learning-based approach
such that given a particular face recognition
block, e.g. FaceNet, we can significantly
reduce the mput image size (e.g. from NxN
to N/8xN/8) while matching as much as
possible the original accuracy.

Dataset

Labeled face in the wild (LFW):

® 13,233 RGB images with a size of (250,
250)

® Training set: 11,910 images — 90%

® Development set: 972 images — 7.35%

® Test set: 351 images - 2.65%

Data preparation:

® Crop face bounding boxes out of images
with an open-source face detector — MTCNN.
All boxes are resized to (160, 160) with
PIL.1mage.resize()

® Prepare training, dev/test datasets:

— X, low-resolution face images, by
down-sampling the bounding boxes to
(20, 20) with PIL.1mage.resize()

— Y, 128-dim embedding vectors, by
feeding high-resolution bounding boxes
(160, 160) to an open-source FaceNet

® Prepare data for performance comparison:

—  high-resolution 1mages X’ with
interpolation-based methods — nearest,
bilinear and bicubic, from X

— embedding vectors for X’
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Positive and negative examples. Top row - our
model performs better. Bottom row — Bicubic
interpolation performs better. From left to right,
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Dataset Preparation

Model architecture:
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