

# Food Image Classification with Convolutional Neural Networks

Malina Jiang (malinaj@stanford.edu) -- https://youtu.be/iJZPs5GE2Hs

## Introduction

- Food images dominate across social media platforms, driving the restaurant and travel industries, but are still relatively unorganized.
- The ability to properly label / classify food images could lead to better recommendation systems (matching food based on an individual's tastes and preferences, or diet).
- Input is a food image, output is label prediction by CNN (whether trained for scratch or pretrained).

## Data and Features

- Food-101<sup>1</sup>: Total of 101,000 images from 101 distinct classes of food, with 1000 images per class. Of these 750 are training images that may be noisy or even mislabeled; 250 are correctly labeled validation images.
- ImageNet<sup>2</sup>: Used only during transfer learning as pre-trained weights, not directly. Of 1000 classes, 10 are food-related.
- Images are color-normalized and augmented through scaling, rotation, flipping, etc.



จรรถดน ลายเดวดนว-+

з-спосоіате саке





Figure 1: Food-101 examples, from left to right: 'ramen', 'pizza', 'apple pie'

### Model

- Baseline model was a shallow CNN with filters of the same size, then a fully-connected layer.
- Transfer learning was performed with VGG16, ResNet50, and InceptionV3, with top layer removed and retrained on the 101 food classes. More layers were incrementally unfrozen to improve performance.



Figure 3: Inception module<sup>4</sup> and residual block<sup>3</sup>

• Loss function was categorical cross-entropy loss:

$$L(y, \hat{y}) = -\sum_{i=1}^{M} y * log(\hat{y})$$

# Results



A tom that to milital tentra mar disharen him il ber illing a son e

Right: Model results and details

Left: Confusion matrix for InceptionV3 model

Table 1: Model accuracy results

### Discussion

- On smaller models, issue was underfitting. With larger models, issue was generally overfitting, though data augmentation and model structure (e.g. residual blocks in ResNet50) mitigated this.
- Highest accuracy model was InceptionV3 pre-trained on ImageNet and with top few layers made trainable, with 61.4% top-1 and 85.2% top-5 accuracy.
- Higher top-5 accuracy shows that model is confused by visually-similar food types.









Figure 2: Mixed images of tiramisu, chocolate cake, chocolate mousse, and cheesecake (actual order in bottom left)

### Future

- Hyperparameter search and optimization.
- Bounding box image preprocessing model.
- Train separate models for food sub-categories.

#### References

[1] Bossard et al., "Food-101-mining discriminative components with random forests," in European Conference on Computer Vision, pp. 446–461, Springer, 2014.

[2] Deng et al., "Imagenet: A large-scale hierarchical image database," in2009 IEEE conference on computer vision and pattern recognition, pp. 248–255, leee, 2009.

vision and pattern recognition, pp. 240–253, rees, 2009.
[3] He et al., "Deep residual learning for image recognition," inProceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

[4] Szegedy et al., "Going deeper with convolutions," inProceedings of the IEEE conference on computer vision and pattern recognition. pp. 1–9, 2015.