Food images dominate across social media platforms, driving the restaurant and travel industries, but are still relatively unorganized. The ability to properly label/classify food images could lead to better recommendation systems (matching food based on an individual’s tastes and preferences, or diet). Input is a food image, output is label prediction by CNN (whether trained for scratch or pretrained).

Data and Features

- Food-101\(^1\): Total of 101,000 images from 101 distinct classes of food, with 1000 images per class. Of these 750 are training images that may be noisy or even mislabeled; 250 are correctly labeled validation images.
- ImageNet\(^2\): Used only during transfer learning as pre-trained weights, not directly. Of 1000 classes, 10 are food-related.
- Images are color-normalized and augmented through scaling, rotation, flipping, etc.

Introduction

- Food images dominate across social media platforms, driving the restaurant and travel industries, but are still relatively unorganized.
- The ability to properly label/classify food images could lead to better recommendation systems (matching food based on an individual’s tastes and preferences, or diet).
- Input is a food image, output is label prediction by CNN (whether trained for scratch or pretrained).

Baseline model was a shallow CNN with filters of the same size, then a fully-connected layer.

Transfer learning was performed with VGG16, ResNet50, and InceptionV3, with top layer removed and retrained on the 101 food classes. More layers were incrementally unfrozen to improve performance.

Loss function was categorical cross-entropy loss:

\[
L(y, \hat{y}) = - \sum_{c=1}^{M} y_c \log(\hat{y}_c)
\]

Results

- On smaller models, issue was underfitting. With larger models, issue was generally overfitting, though data augmentation and model structure (e.g. residual blocks in ResNet50) mitigated this.
- Highest accuracy model was InceptionV3 pre-trained on ImageNet and with top few layers made trainable, with 61.4% top-1 and 85.2% top-5 accuracy.
- Higher top-5 accuracy shows that model is confused by visually-similar food types.

Future

- Hyperparameter search and optimization.
- Bounding box image preprocessing model.
- Train separate models for food sub-categories.

References