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An accurate 3D perception is indispensable for remote sensing in

Majority of the modern systems heavily rely
on for object tracking and collision avoidance

However, point cloud data is
, , and -
which prevents a direct application of conv-based methods |

Approaches that first voxelize, or project point clouds into a*
bird’s eye view are often and suffer from informatio

We propose to adapt —an end-to-end DNN thét Ii-f:'é\'/erages |
Hough voting to detect 3D objects directly from the raw | ud data

Network Architecture Adaptation to KITTI Results
e PointNet layer takes as input an unordered point set e KITTI 3D object detection dataset*: e The biggest improvement of 34.2 AP for Car category,
. * 7481 annotated and 7518 test scenes of while 19.9 AP for Pedestrian, and 20.5 AP for Cyclist
P — . IV_ th ., — x’ .| E ]:R3+Cl ) y
WPitiz1 with p; =[x fi] 360° LiDAR PC, RGB image, calib. matrices, etc.
and learns a symmetric set function of the form=: e 3712 scenes for training, 3769 for validation Car Pedestrian Cyclist
: Original 21.0 11.3 0.5
. — . Preprocessing:
g({pi}) = v - MAX({h(pi)}) ‘
p; €P *  Projection of PC onto the image plane Tuned 31.2 27.9 Lol
where h : R - RPrand y : RP! - R¢+1 are MLP networks * Random subsampling of PC to 16,384 points Tuned + M3G 2> 22 240
MAX is channel-wise max-pooling op.: RP! X --- x RP! — RD!  Augmentations with flips, rotation, scaling Average Precision (AP) on KITTI validation split (loU@0.25)
N  Optional extra features: reflectance and height
e Set-abstraction (SA) module encodes fine geometric o e Good prediction for objects close to LiDAR,
patterns of the point cloud (PC) at different contextual * Adapt network to characteristics of outdoor PC: even for partially occuded cases (e.g. parked cars)

 Adjust receptive field radii (KITTI PC spans >70m)

* Tune # of clusters for feature aggregation
* [ntroduce MSG layers for robust feature

scales by recursively applying PointNet layer on over-

lapping local regions of progressively larger volume? e However, results deteriorate fast for object further

away due to small number of foreground points

SA module - : : :
earning under non-uniform sampling densit . .
- o0 o & PINg Y e The observed degree of clustering of vote points
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=S 3 = around centroids of the objects is not always found
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= O S = to be suffient in order to produce accurate results
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e The feature extraction network comprises several 25
. o g
SA modules enhanced with feature propagation (FP) “f S
[ . -'_, S
layers (skip connections) to output a total of M seed g
points enriched with 3 + € deep semantic features = |
o . s "3?‘1}:"'22
Thg Hough voting module take; the M seed Rl e Final VoteNet parameters for to KITTI outdoor scenes oA
an input and learns a feature displacement function to
output M vote points that cluster near object centroids Modules Output | Grouping | MSG Radii MLP Layers
(Input) Dimensions Clusters (m) e
: es s SA, (PC 4096, 3 + 96 2048 | 0.1, 0.5 | 16/16/32,  32/32/64
e Object proposal and classification network leverages (PO i A e
SA d | t t . f t . th SA, (SA,) (1024, 3 + 256) 1024 0.5, 1.0 | 64/64/128, 64/96/128
an >A Module 1o aggresate information in 2f3+2H+4S+T SA, (SA,) | (512,3+512) 512 1.0, 2.0 |128/196/256, 128/196/256 e o R
and generate an output € R SA, (SA,) (64, 3 +512) 256 2.0, 4.0 |256/256/512, 256/384/512 Tyl eE R SR
= N =R e RPN 5;@’354 RN
with 2 objectness scores, 3 center regression values, 2H heading FPy (SA5 SA,) | (512,3+512) — — 512/512 N e e T . N@mtp R
bins with reg. corrections, S box size anchors with 3S box size FP, (SA, SA;) | (1024,3+512) |  — — 512/512 \Q"’Ma e neh gl R T
regression corrections, and T values for semantic classification \Berehae EET et piimn AR
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VoteNet courtesy of Qi C et al.? \/
Voting in Point Clouds Object Proposal and Classification from Votes
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[ ) E | e Compared to the recently published state-of-the-art
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on Poin: clond feabire + : ¥ 2o n; X (3+C) — Propose & Classify —] & Z g results on KITTI 3D object detection benchmark,
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= earning backbone = shared x = £ e | 2] | there are still many ways to improve
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The sparse character of the large-scale outdoor LiDAR
scenes results in a poor signal-to-noise ratio, which

Tput: Seeds Votes Output: could require a kind of point filtering, or foreground
point cloud (XYZ + feature) (XYZ + feature) 3D bounding boxes pre-segmentation step
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e Alternatively, a VoteNet model could be enhanced by
first predicting foreground scores for each point to
weight its point features, thereby resulting in fore-
ground points bearing a larger contribution to voting
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