3D Object Detection from Point Cloud

CS230 Deep Learning

youtu.be/14tuCG-tfpo

Alexander Arzhanov { aarz@stanford.edu } **Stanford University**

Hough voting to detect 3D objects directly from the raw point cloud data

Network Architecture

 PointNet layer takes as input an unordered point set $P = \{p_i\}_{i=1}^N \text{ with } p_i = [x_i; f_i] \in \mathbb{R}^{3+C_l}$ and learns a symmetric set function of the form²:

$$g(\{p_i\}) = \gamma \circ \underset{p_i \in P}{\mathsf{MAX}}(\{h(p_i)\})$$

where $h: \mathbb{R}^{C_l} \to \mathbb{R}^{D_l}$ and $\gamma: \mathbb{R}^{D_l} \to \mathbb{R}^{C_{l+1}}$ are MLP networks, MAX is channel-wise max-pooling op.: $\mathbb{R}^{D_l} \times \cdots \times \mathbb{R}^{D_l} \to \mathbb{R}^{D_l}$

• Set-abstraction (SA) module encodes fine geometric patterns of the point cloud (PC) at different contextual scales by recursively applying *PointNet layer* on overlapping local regions of progressively larger volume³:

- The feature extraction network comprises several SA modules enhanced with feature propagation (FP) layers (skip connections) to output a total of *M* seed points enriched with 3 + C deep semantic features
- The Hough voting module takes the M seed points as an input and learns a feature displacement function to output *M* vote points that cluster near object centroids
- Object proposal and classification network leverages an SA module to aggregate information in the clustered *virtual points* and generate an *output* $\in \mathbb{R}^{2+3+2H+4S+T}$

with 2 objectness scores, 3 center regression values, 2H heading bins with reg. corrections, **S** box size anchors with **3S** box size

Adaptation to KITTI

- KITTI 3D object detection dataset⁴:
 - 7481 annotated and 7518 test scenes of 360° LiDAR PC, RGB image, calib. matrices, etc.
 - 3712 scenes for training, 3769 for validation
- Preprocessing:
 - Projection of PC onto the image plane
 - Random subsampling of PC to 16,384 points
 - Augmentations with flips, rotation, scaling
 - Optional extra features: reflectance and height
- Adapt network to characteristics of outdoor PC:
 - Adjust receptive field radii (KITTI PC spans >70m)
 - Tune # of clusters for feature aggregation
 - Introduce **MSG layers** for robust feature learning under non-uniform sampling density

• Final **VoteNet** parameters for to KITTI outdoor scenes

Modules (Input)	Output Dimensions	Grouping Clusters	MSG Radii (m)	MLP Layers	
SA ₁ (PC)	(4096, 3 + 96)	2048	0.1, 0.5	16/16/32, 32/32/64	
SA₂ (SA ₁)	(1024, 3 + 256)	1024	0.5, 1.0	64/64/128, 64/96/128	
SA₃ (SA ₂)	(512, 3 + 512)	512	1.0, 2.0	128/196/256, 128/196/256	
SA₄ (SA ₃)	(64, 3 + 512)	256	2.0, 4.0	256/256/512, 256/384/512	
FP ₁ (SA ₃ , SA ₄)	(512, 3 + 512)	_	_	512/512	
FP₂ (SA ₂ , SA ₃)	(1024, 3 + 512)	_	_	512/512	

Results

• The biggest improvement of **34.2 AP** for *Car* category, while 19.9 AP for *Pedestrian*, and 20.5 AP for *Cyclist*

	Car	Pedestrian	Cyclist
Original	21.0	11.3	0.5
Tuned	31.2	27.9	14.1
Tuned + MSG	55.2	31.2	21.0

Average Precision (AP) on KITTI validation split (IoU@0.25)

- Good prediction for objects close to LiDAR, even for partially occuded cases (e.g. parked cars)
- However, results deteriorate fast for object further away due to small number of foreground points
- The observed degree of clustering of vote points around centroids of the objects is not always found to be suffient in order to produce accurate results

Outlook

- Compared to the recently published state-of-the-art results on KITTI 3D object detection benchmark, there are still many ways to improve
- The sparse character of the large-scale outdoor LiDAR scenes results in a poor signal-to-noise ratio, which could require a kind of point filtering, or foreground pre-segmentation step
- Alternatively, a VoteNet model could be enhanced by first predicting foreground scores for each point to weight its point features, thereby resulting in foreground points bearing a larger contribution to voting

