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Objective: Building an autoencoder using Neural Networks for 

computing a nonlinear approximation of the subspace and 

solving the optimization problem in the subspace. 

Background & Methodology 

Overview
A novel dimensionality reduction approach related to solving 

highly parameterized optimization problems is introduced 

specifically for problems involving running expensive computer 

simulations such as aircraft design. 

The method of active subspace compresses with SVD the 

gradients of the objective function f(x) to learn a linear low-

dimensional representation of the input parameters:  ! ≈ #$!%

Data & Features Experiments & Results

Model & Model Selection

Conclusions and Future Work
• Using a nonlinear manifold for representing a subspace has 

advantages especially when a linear active subspace fails to 
capture nonlinearities in the problem

• The linear active subspace is a particular case of the nonlinear 

active subspace obtained with the autoencoder

• In the future, I would like to study how to make the training of the 
autoencoder cheaper and to study the performances of this 
methodology in other additional problems.

Results: the proposed approach is applied to a series of 

optimization problems and the results show that  the autoencoder 

can efficiently represent a nonlinear manifold reducing the 

dimensionality of the problem and solve the optimization problem.

Issue: A method used for dimensionality reduction is Active 
Subspace (AS); it consists in a linear approximation of the 
subspace and it is not always feasible for nonlinear problems.

Assuming the optimization 

problem has the following form:

Using linear Active subspace, 

the following problem is 

solved:

The autoencoder learn a 

nonlinear low-dimensional 

representation of the input 

parameters:      ! ≈ &(!%)

Using nonlinear Active 

subspace, the following 

problem is solved:

The dataset for training the 

autoencoder contains gradients ∇*. 

The data is generated using computer 

simulations: For a randomly sampled 

vector of parameters !+ the gradient 

∇*(!+) is computed.

The dataset is  the matrix M,  

(#rows= ,$ and #cols = m)

The size of the dataset, m, is chosen 

using  an iterative process

Three models considered. A grid search for selecting the model with 
the lowest dev set loss is run after training with the mAEWing dataset

model F.C. autoenc. Conv autoenc. Conv-FC autoe.

Dev set Loss 36.6 21.8 36.7

Loss has the following definition:

The optimal architecture has 3 layers: the first layer has 33 filters, the 
second layer has 23 filters and the third layer has 3 filters (equal to -$ )

Unconstrained optimization, ,$=33, -$ = 2

Design constrained optimization mAEWing2, ,$=33, -$ = 5


